版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 附:英文翻譯</b></p><p> LIMIT ANALYSIS OF SOIL SLOPES SUBJECTED TO PORE-WATER PRESSURES</p><p> By J.Kim R.salgado, assoicite member, ASCE ,and H.S., member,ASCE </p>
2、;<p> ABSTRACT: the limit-equilibrium method is commonly, used for slope stability analysis. However, it is well known that the solution obtained from the limit-equilibrium method is not rigorous, because neith
3、er static nor kinematic admissibility conditions are satisfied. Limit analysis takes advantage of the lower-and upper-bound theorem of plasticity to provide relatively simple but rigorous bounds on the true solution. In
4、this paper, three nodded linear triangular finite elements are used to con</p><p> INTRODUCTION </p><p> Stability and deformation problem in geotechnical engineering are boundary-value proble
5、m; differential equations must be solved for given boundary conditions. Solutions are found by solving differential equations derived from condition of equilibrium, compatibility, and the constitutive relation of the soi
6、l, subjected to boundary condition. Traditionally, in soil mechanics, the theory of elasticity is used to set up the differential equations for deformation problems, while the theory of plastic</p><p> Stab
7、ility problem of natural slopes, or cut slopes are commonly encountered in civil engineering projects. Solutions may be based on the slip-line method, the limit-equilibrium method, or limit analysis. The limit-equilibriu
8、m method has gained wide acceptance in practice due to its simplicity. Most limit-equilibrium method are based on the method of slices, in which a failure surface is assumed and the soil mass above the failure surface is
9、 divided into vertical slices. Global static-equilibrium</p><p> Limit analysis takes advantage of the upper-and lower-bound theorems of plasticity theory to bound the rigorous solution to a stability probl
10、em from below and above. Limit analysis solutions are rigorous in the sense that the stress field associated with a lower-bound solution is in equilibrium with imposed loads at every point in the soil mass, while the vel
11、ocity field associated with an upper-bound solution is compatible with imposed displacements. In simple terms, under lower-bound loadings, </p><p> The effects of pore-water pressure have been considered in
12、 some studies focusing on calculation of upper-bound solutions to the slope stability problem. Miller and Hamilton examined two types of failure mechanism: (1) rigid body rotation; and (2) a combination of rigid rotation
13、 and continuous deformation. Pore-water pressure was assumed to be hydrostatic beneath a parabolic free water surface. Although their calculations led to correct answers, the physical interpretation of their calculation
14、of</p><p> The objectives of this paper are (1) present a finite-element formulation in terms of effective stresses for limit analysis of soil slopes subjected to pore-water pressures; and (2) to check the
15、accuracy of Bishop’s simplified method for slope stability analysis by comparing Bishop’s solution with lower-and upper-bound solution. The present study is an extension of previous research, where Bishop’s simplified li
16、mit-equilibrium solutions are compared with lower-and upper-bund solutions for simple</p><p> LIMIT ANALYSIS WITH PORE-WATER PRESSURE </p><p> Assumptions and Their implementation </p>
17、<p> Limit analysis uses an idealized yield criterion and stress-strain relation: soil is assumed to follow perfect plasticity with an associated flow rule. The assumption of perfect plasticity expresses the possib
18、le states of stress in the form</p><p> F() = 0 (1)</p><p> Where F() = yield function; and = effective stress tensor.</p><p> Associated flow rule defines the p
19、lastic strain rate by assuming the yield function F to coincide with the plastic potential function G, from which the plastic strain rate can be obtained though</p><p><b> ?。?)</b></p>&l
20、t;p> where = nonnegative plastic multiplier rate that is positive only when plastic deformations occur.</p><p> Eq. (2) is often referred to as the normality condition, which states that the direction o
21、f plastic strain rate is perpendicular to the yield surface. Perfect plasticity with an associated with very large displacements are of concern. In addition, theoretical studies show that the collapse loads for earth slo
22、pes, where soils are not heavily constrained, are quite insensitive to whether the flow rule is associated or non-associated.</p><p> Principle of Virtual Work</p><p> Both the lower-and upper
23、 –bound theorems are based on the principle of virtual work. The virtual work equation is applicable, given the assumption of small deformations before collapse, and can be expressed as either</p><p><b&g
24、t; ?。?)</b></p><p> Or (4)</p><p> Where = boundary loadings; = body forces not including seepage and buoyancy forces; = body forces including seepage and buoyancy forces
25、;= total stress tensor in equilibrium with and ; = effective stress tensor in equilibrium with and ; = Kronecker delta; p = pore-water pressure; and = strain rate tensor compatible with the velocity field .</p&
26、gt;<p> There is no need for , , and to be related to and in any particular way for (3) or (4) represent the rate of the external work, while the right-hand sides represent the rate of the internal power diss
27、ipation done by the assumed stress field and external loads on the assumed strain and velocity fields. The difference between (3) and (4) is the way to incorporate the effect of pore-water pressure: the pore-water pressu
28、res are considered as internal force, reducing the internal power dissipatio</p><p> Lower-bound Theorem</p><p> If the stress field within the soil mass is stable and statically admissible, t
29、hen collapse does not occur; that is, the true collapse load is definitely greater than the applied load. This can be written in the form of the virtual work equation, using (3), as </p><p><b> (5)<
30、;/b></p><p> Where = statically admissible stress field in equilibrium with the traction and body force not including the seepage and buoyancy force; = actual stress; = actual stain rate; and = veloc
31、ity fields.</p><p> In (5), the inequality is due to the principle of maximum plastic dissipation, according to which the actual strain rate field is always larger than the rate of work done on the actual s
32、train rate field by a stress field not causing collapse. In (5), only the equilibrium condition and the stress boundary conditions not taken into account. The best lower bound to the true collapse load can be found by an
33、alyzing various trial statically admissible stress fields.</p><p><b> 中文對照翻譯:</b></p><p> 孔隙水壓力作用下土坡的極限分析</p><p> 摘要:極限平衡法一般用于土坡的穩(wěn)定性分析。然而,眾所周知的是,從極限分析法中獲得的解是不嚴密的,因為它既
34、不滿足靜態(tài)的允許條件,又不滿足動態(tài)的允許條件。極限分析法充分利用了塑性體的上下邊界原理,在求真實解中提供了一個相對簡單但又嚴密的邊界。在這篇文章中,三點確定的三角形三邊有限元法被利用與構造在下邊界分析中的靜態(tài)允許應力場和上邊界分析中的速度場。通過假設三角形頂點的線變量和元素變量,真實解應該是一個線形的約束問題。在靜態(tài)和動態(tài)的條件都滿足的基礎上,真實解應該處在上下邊界所得的解之間。在有限元公式中,要考慮包括了孔隙壓力的影響,以便使飽和土坡
35、的有效應力分析可以得出。作者對從不同地下水形式下簡單土坡的極限分析所得的結果與極限平衡法中所得的結果作了比較。</p><p> 概述:穩(wěn)定性和變形問題在全球技術工程領域是一個邊界值問題。微分方程必須用給定的邊界條件來解決。通過解決由平衡協(xié)調條件以及沙土的本構關系推出的微分方程,從而得到邊界條件下的解。按照傳統(tǒng)的說法,在土力學中,彈性理論是用來建立變形微分方程的,就象塑性理論是用來建立穩(wěn)定性問題的微分方程一樣
36、。為了獲得這個解,荷載由小到大變化,直到足夠大引起部分土體的滑坡。作為土體破壞的力學行為,完整的彈塑性分析以為是一個可能的方法。然而,這樣一個彈塑性分析方法很少應用于實際問題當中,因為他的計算機太過復雜。站在實踐的立場上,穩(wěn)定性的最基本關注點應該是土體破壞條件。因此,真實解應該是通過關注即將發(fā)生的破壞條件的一個簡單的方法中得來。</p><p> 自然土坡、填方土坡和挖方土坡的穩(wěn)定性問題是土木工程領域碰到的最常
37、見的問題。求解通常建立在滑移線方法上,極限平衡方法或極限分析法的基礎上。由于它的簡單,在實踐中,極限平衡法是最被廣泛使用的。極限平衡法大部分建立在分塊理論的基礎上,在這種理論中,假設有一個破壞的滑動面,而且在此之上的土體被劃分為若干垂直土條,整個靜態(tài)平衡條件下假設的失穩(wěn)表面是被確定的,一個臨界的滑動破裂面必須要找到,因為它的安全因數(shù)最小。在極限平衡法的發(fā)展過程中,要努力去做的是怎么降低通過內力假設的不確定性。但是,沒有一種解的得來是建立
38、在這樣的極限分析法的基礎上,甚至在嚴格的力學意義上講,它都不算一個嚴密的解。在極限平衡法中,平衡方程并不是對土體的每一點都適用的。另外,在典型的假定滑動面方法中,流動法則是不滿足的,同樣,協(xié)調性條件和破壞前的本構關系也是不滿足的。</p><p> 極限分析法充分利用了邊界理論,得出了相對應用于上下邊界的兩個嚴密的解。極限分析法在以下兩種意義上是嚴密的,一是土體在外加荷載作用下的平衡,下邊界解所對應的應力場;二
39、是與外加位移相協(xié)調,上邊界所對應的速度場。就簡單而言,下邊界荷載作用下,滑動不會發(fā)生,但是如果下邊界受到外加荷載的作用,則滑動可能立即發(fā)生。同樣,在上邊界作用外加荷載,滑坡也會立即發(fā)生。通過尋找下邊界的最大可能解和上邊界的最小可能解,真實解存在于他們之間的范圍內。對于土坡穩(wěn)定性問題,給定土體的性質或幾何尺寸的基礎上,知道土坡發(fā)生滑動的臨界高度和發(fā)生部分滑坡的臨界荷載才能得出解來。在過去,對于土坡穩(wěn)定性的應用,大多數(shù)研究工作都集中在上邊界
40、法上,這是因為通過求解下邊界適合靜態(tài)允許應力場方程的解是一項很困難的任務。大多數(shù)先前的工作都基于總應力之上。對于有效應力的分析,考慮孔隙水壓力的作用是很有必要的。在極限平衡法中,孔隙水壓力是通過限定一個地下水表面和一個可能的流動網(wǎng)或者通過一個孔隙水壓力比率模擬地下水條件推測出來的。相似的方法可以用于明確說明孔隙水壓力作用下的極限分析。</p><p> 在大量的實踐中,孔隙水壓力的影響被看作集中考慮在土坡穩(wěn)定性
41、問題的上邊界解上。Miller和Hamilton兩人實驗出了兩種力學破壞類型:(1)剛體旋轉;(2)剛體旋轉和持續(xù)變形相結合??紫端畨毫Ρ患俣ǔ闪黧w靜力學下的一個拋物線型的自由水表面,盡管他們的研究得出了正確的答案,但是,從物理學上解釋他們的研究,在能量消散上是有爭議的。在他們的理論中,孔隙水壓力被看作是內力,在給定的滑坡機理下,它對降低內部能量消散是有影響的??紫端畨毫σ部梢钥醋魇且环N外力。在Michalowsk的研究中,假設剛體是沿
42、著螺旋線破壞的??紫端畨毫Ρ豢紤]用孔隙水壓力比來表示:這里,u是孔隙水壓力;是沙土的比重;z是土體表面以下的深度。它表示孔隙水壓力在內部摩擦力等于零時的分析沒有影響,這就證實了用總應力分析時。在另一項研究中,除了用不同形狀的破裂面結合分塊分析法時,Michalowski秉承了相同的方法。當這種努力結合孔隙水壓力作用在土坡上邊界的影響中,作者沒有意識到就有效應力而言有任何的下邊界極限分析要做。這可能因為在考慮孔隙水壓力的情況下,構造靜態(tài)允
43、許應力場的難度增大。</p><p> 這篇文章的目的有兩個:(1)就有效應力而言,為土坡在孔隙水壓力作用下的極限分析提出了一個有限元的公式;(2)通過比較Bishop的上下邊界解來核實土坡穩(wěn)定性分析方法在被Bishop簡化的極限平衡法所得的解與簡單坡中不考慮孔隙水壓力作用,上下邊界所得的解相比較。在這篇文章中,在平面應變條件下,上下邊界的極限分析是要考慮孔隙水壓力影響的。Slon和Kleenman在考慮了上邊
44、界和下邊界的情況下,利用了三點構成的三邊線性代數(shù)的方法將孔隙水壓力計算出來的。為了模仿應力場和速度場,由三點組成的三邊線性元素就要被利用。公認的力學理論包括剛體的轉動和持續(xù)變形。就分點的應力和孔隙水壓力或者速度而言,用平衡方程、協(xié)調條件、流動法則、屈服準則、邊界條件的線性代數(shù)等式來表達,那么,求解最佳上下邊界是在幾個簡單土坡的構造和地下水形式下被考慮的,解是以諾莫圖的形式給出。</p><p> 孔隙水壓力作用
45、下的極限分析:</p><p> 極限分析用了屈服準則和應力應變關系:土體在流動法則下假設成一個理想的塑性體。在這個理想的塑性體假設表明了可能的應力狀態(tài)形式:</p><p><b> (1)</b></p><p> 這里,F(xiàn)是應變函數(shù),是有效應力張量。</p><p> 通過假設應變函數(shù)F配合塑性體潛在的應變
46、函數(shù)G,用伴隨的流動法則來定義塑性體應變率,塑性應變率可以從中得出:</p><p><b> (2)</b></p><p> 這里,是非負的塑性比值,也就是當發(fā)生塑性變形時的正直。</p><p> 等式(2)通常被認為是常態(tài)條件,就表面當量而言,塑性應變率的方向關系是垂直的。理想的塑性體伴隨著流動法則是一個合理的假設,如果考慮荷載下
47、伴隨非常大的位移。另外,理論研究表明,不管有沒有流動法則的存在,當土體沒有受到嚴重的受壓,土坡的坍塌荷載是很不敏感的。</p><p><b> 內部作用法則:</b></p><p> 上邊界和下邊界原理都建立在內部作用原則的基礎上,在發(fā)生坍塌前,給定了假設的小變形,內部作用等式是可以運用的,并且可以用以下的關系來表達:</p><p>
48、<b> (3)</b></p><p><b> 或者</b></p><p><b> (4)</b></p><p> 這里,是邊界荷載;是不包括滲透量和浮力的自重是包括滲透量和浮力的自重;是在和平衡下的總應力張量;是在和平衡下的有效應力張量;是Kronecker增量;P是孔隙水壓力;是
49、與速度場一致的應變率張量。</p><p> 不需要用任何特殊的方式通過(3)式和(4)式把,和聯(lián)系在一起。在(3)式和(4)式的左邊代表外部作用比率,而(3)式(4)式右邊代表外部能量消散比率,通過假設外加荷載的應力場和假設應變的速度場,(3)式和(4)式之間的區(qū)別在于組成有效孔隙水壓力的形式不同。(3)式中,孔隙水壓力被認為是內力,它減少了內部的能量消散,而在(4)式中,孔隙水壓力被認為是外力。</p
50、><p> 通過充分利用常態(tài)條件,顯而易見的是彈性應力和應變對坍塌荷載沒有影響,即:= .也就是說,只有在塑性體流動時,塑性變形才發(fā)生。假設剛體是理想的塑性體,用一個簡單的極限分析去解決穩(wěn)定性問題是沒有嚴格損失的。</p><p><b> 下邊界理論:</b></p><p> 如果土體內的應力場是穩(wěn)定的,靜態(tài)允許的,那么坍塌不會發(fā)生,也就
51、是說,真實的坍塌荷載一定比計算荷載要大。這里可以用內部作用等式的形式來表示,由(3)式得:</p><p><b> (5)</b></p><p> 這里是不包括滲透量和浮力的自重與摩擦力平衡時的靜態(tài)允許應力。是真實的應力,是真實的應變率,是速度場。</p><p> 在(5)式中,不等式的成立是由于最大塑性消散原則,根據(jù)在真實應變率場
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---孔隙水壓力作用下土坡的極限分析
- 外文翻譯--孔隙水壓力作用下土坡的極限分析
- 57543.循環(huán)孔隙水壓力作用下飽和砂土變形的試驗研究
- 外文翻譯---周期性靜水壓力作用下混凝土壩的診斷分析
- 外文翻譯---周期性靜水壓力作用下混凝土壩的診斷分析
- 孔隙水壓力監(jiān)測
- 機械專業(yè)畢業(yè)設計外文翻譯--極限與誤差
- 土建專業(yè)畢業(yè)設計外文翻譯----地下水
- 土建專業(yè)畢業(yè)設計外文翻譯----土方工程
- 外文翻譯---周期性靜水壓力作用下混凝土壩的診斷分析(譯文)
- 外文翻譯---周期性靜水壓力作用下混凝土壩的診斷分析(譯文).docx
- 外文翻譯---周期性靜水壓力作用下混凝土壩的診斷分析(譯文).docx
- 土建專業(yè)畢業(yè)設計外文翻譯--建筑的組成部分
- 土建施工畢業(yè)設計外文翻譯
- 土建專業(yè)畢業(yè)設計外文翻譯--大跨度frp網(wǎng)架結構的展望和分析
- 土建專業(yè)畢業(yè)設計外文翻譯--抗側向荷載的結構體系
- 堅硬頂板水壓力作用機理研究.pdf
- 土建專業(yè)畢業(yè)設計外文翻譯--大跨度frp網(wǎng)架結構的展望和分析
- 土建專業(yè)畢業(yè)設計外文翻譯--大跨度frp網(wǎng)架結構的展望和分析
- 土建畢業(yè)設計外文翻譯--電力塔
評論
0/150
提交評論