版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、<p><b> 外文資料翻譯</b></p><p> Design, Construction & Structural Details of Burj Dubai</p><p> The goal of the Burj Dubai Tower is not simply to be the world's highest bu
2、ilding: it's to embody the world's highest aspirations. The superstructure is currently under construction and as of fall 2007 has reached over 160 stories. The final height of the building is 2,717 feet (828 met
3、ers). The height of the multi-use skyscraper will "comfortably" exceed the current record holder, the 509 meter (1671 ft) tall Taipei 101. The 280,000 m2 (3,000,000 ft2) reinforced concrete multi-use Burj
4、Dubai to</p><p> Structural System Description</p><p> Burj Khalifa has "refuge floors" at 25 to 30 story intervals that are more fire resistant and have separate air supplies in cas
5、e of emergency. Its reinforced concrete structure makes it stronger than steel-frame skyscrapers</p><p> Designers purposely shaped the structural concrete Burj Dubai - "Y" shaped in plan - to red
6、uce the wind forces on the tower, as well as to keep the structure simple and foster constructibility. The structural system can be described as a "buttressed" core (Figures 1, 2 and 3). Each wing, with its own
7、 high performance concrete corridor walls and perimeter columns, buttresses the others via a six-sided central core, or hexagonal hub. The result is a tower that is extremely stiff laterally and tors</p><p>
8、 Each tier of the building sets back in a spiral stepping pattern up the building. The setbacks are organized with the Tower's grid, such that the building stepping is accomplished by aligning columns above with wal
9、ls below to provide a smooth load path. This allows the construction to proceed without the normal difficulties associated with column transfers</p><p> The setbacks are organized such that the Tower's
10、width changes at each setback. The advantage of the stepping and shaping is to "confuse the wind'1. The wind vortices never get organized because at each new tier the wind encounters a different building shape.&
11、lt;/p><p> The Tower and Podium structures are currently under construction (Figure 3) and the project is scheduled for topping out in 2008。</p><p> Architectural Design</p><p> The
12、 context of the Burj Dubai being located in the city of Dubai, UAE, drove the inspiration for the building form to incorporate cultural, historical, and organic influences particular to the region。</p><p>
13、The center hexagonal reinforced concrete core walls provide the torsional resistance of the structure similar to a closed tube or axle. The center hexagonal walls are buttressed by the wing walls and hammer head walls wh
14、ich behave as the webs and flanges of a beam to resist the wind shears and moments.</p><p> Outriggers at the mechanical floors allow the columns to participate in the lateral load resistance of the structu
15、re; hence, all of the vertical concrete is utilized to support both gravity and lateral loads. The wall concrete specified strengths ranged from C80 to C60 cube strength and utilized Portland cement and fly ash</p>
16、<p> Local aggregates were utilized for the concrete mix design. The C80 concrete for the lower portion of the structure had a specified Young's Elastic Modulus of 43,800 N/mm2 (6,350ksi) at 90 days. The wall
17、 and column sizes were optimized using virtual work .' La Grange multiplier methodology which results in a very efficient structure (Baker et ah, 2000). The reinforced concrete structure was designed in accordance wi
18、th the requirements of ACI 318-02 Building Code Requirements for Structural Concr</p><p> The wall thicknesses and column sizes were fine-tuned to reduce the effects of creep and shrinkage on the individual
19、 elements which compose the structure. To reduce the effects of differential column shortening, due to creep, between the perimeter columns and interior walls, the perimeter columns were sized such that the self-weight g
20、ravity stress on the perimeter columns matched the stress on the interior corridor walls. The five (5) sets of outriggers, distributed up the building, tie all the </p><p> The top section of the Tower cons
21、ists of a structural steel spire utilizing a diagonally braced lateral system. The structural steel spire was designed for gravity, wind, seismic and fatigue in accordance with the requirements of AISC Load and Resistanc
22、e Factor Design Specification for Structural Steel Buildings (1999). The exterior exposed steel is protected with a flame applied aluminum finish.</p><p> Analysis for Gravity</p><p> The stru
23、cture was analyzed for gravity (including P-Delta analysis), wind, and seismic loadings by ETABS version 8.4 (Figure 6). The three-dimensional analysis model consisted of the reinforced concrete walls, link beams, slabs,
24、 raft, piles, and the spire structural steel system. The full 3D analysis model consisted of over 73,500 shells and 75,000 nodes. Under lateral wind loading, the building deflections are well below commonly used criteria
25、. The dynamic analysis indicated the first mode is l</p><p> Site Test and Analysis</p><p> The Dubai Municipality (DM) specifies Dubai as a UBC97 Zone 2a seismic region (with a seismic zone f
26、acior Z = 0.15 and soil profile Sc). The seismic analysis consisted of a site specific response spectra analysis. Seismic loading typically did not govern the design of the reinforced concrete Tower structure. Seismic lo
27、ading did govern the design of the reinforced concrete Podium buildings and the Tower structural steel spire</p><p> Dr. Max Irvine (with Structural Mechanics & Dynamics Consulting Engineers located in
28、Sydney Australia) developed site specific seismic reports for the project including a seismic hazard analysis. The potential for liquefaction was investigated based on several accepted methods; it was determined that liq
29、uefaction is not considered to have any structural implications for the deep seated Tower foundations.</p><p> In addition to the standard cube tests, the raft concrete was field tested prior to placement b
30、y flow table (Figure 10). L-box, V-Box and temperature The Tower foundations consist of a pile supported raft. The solid reinforced concrete raft is 3.7 meters (12 ft) thick and was poured utilizing C50 (cube strength) s
31、elf consolidating concrete (SCC). The raft was constructed in four (4) separate pours (three wings and the center core). Each raft pour occurred over at least a 24 hour period. Reinforc</p><p> The Tower ra
32、ft is supported by 194 bored cast-in-place piles. The piles are 1.5 meter in diameter and approximately 43 meters long with a design capacity of 3,000 tonnes each. The Tower pile load test supported over 6,000 tonnes (Fi
33、gure 12). The C60 (cube strength) SCC concrete was placed by the tremie method utilizing polymer slurry. The friction piles are supported in the naturally cemented calcisiltite conglomeritic 聚結(jié)calcisiltite fomiations dev
34、eloping an ultimate pile skin friction of 250 to</p><p> The site geotechnical investigation consisted of the following Phases。Phase I; 23 Boreholes (three with pressuremeter testing) with depths up to 90m.
35、 </p><p> Phase 2: 3 Boreholes drilled with cross-hole geophysics.。Phase 3: 6 Boreholes (two with pressuremeter testing) with depths up to 60m。Phase 4: 1 Borehole with cross-hole and down-hole gophysics; de
36、pth = 140m</p><p> 3D foundation settlement analysis</p><p> A detailed 3D foundation settlement analysis was carried out (by Hyder Consulting Ltd., UK) based on the results of the geotechnica
37、l investigation and the pile load test results. It was determined the maximum long-term settlement over time would be about a maximum of 80mm (3.1"). This settlement would be a gradual curvature of the top of grade
38、over the entire large site. When the construction was at Level 135, the average foundation settlement was 30mm (1.2"). The geotechnical studies were peer </p><p> The groundwater in which the Burj Duba
39、i substructure is constructed is particularly severe, with chloride concentrations of up to 4.5%, and sulfates of up to 0.6%. The chloride and sulfate concentrations found in the groundwater are even higher than the conc
40、entrations in sea water. Accordingly, the primary consideration in designing the piles and raft foundation was durability. The concrete mix for the piles was a 60 MPa mix based on a triple blend with 25% fly ash, 7% sili
41、ca fume, and a water t</p><p> Due to the aggressive conditions present caused by the extremely corrosive ground water, a rigorous program of anti-corrosion measures was required to ensure the durability of
42、 the foundations. Measures implemented included specialized waterproofing systems, increased concrete cover, the addition of corrosion inhibitors to the concrete mix. stringent crack control design criteria, and cathodic
43、 protection system utilizing titanium mesh (Figure 13) with an impressed current.</p><p> Wind Engineering</p><p> For a building of this height and slenderness, wind forces and the resulting
44、motions in the upper levels become dominant factors in the structural design. An extensive program of wind tunnel tests and other studies were undertaken under the direction of Dr. Peter Irwin of Rowan Williams Davies an
45、d Irwin Inc.'s (RWD1) boundary* layer wind tunnels in Guelph. Ontario (Figure 14). The wind tunnel program included rigid-model force balance tests, a foil multi degree of freedom aero elastic model stud</p>&
46、lt;p> environment studies and wind climatic studies. Wind tunnel models account for the cross wind effects of wind induced vortex shedding on the building. The aeroelastic and force balance studies used models mostly
47、 at 1:500 scale. The RWDI wind engineering was peer reviewed by Dr. Nick Isyumov of the University of Western Ontario Boundary Layer Wind Tunnel Laboratory.</p><p><b> 迪拜的設計</b></p><p
48、> 迪拜塔的目的不僅僅只是成為世界上最高的建筑:而是象征著世界上最高的抱負。那個龐然大物目前正在建設當中,而到了2007年秋就已經(jīng)超過了160多層。最后的高度將達到828米。這棟混合結(jié)構(gòu)的摩天大廈將輕輕松松超過目前最高紀錄的保持著臺北101大廈。這棟擁有280000立方米混凝土的混合結(jié)構(gòu)迪拜塔將投入商用,最為一個賓館,商品房還有辦公用所。和其他超高工程一樣,復雜的工程意味著面臨一大堆的工程問題要解決。</p>&l
49、t;p> 迪拜塔每隔25到30層便設置一個“避難層”,這些層跟普通樓層比起來更加能抗火而且備有獨立的空氣提供系統(tǒng)以防事故。鋼筋混凝土結(jié)構(gòu)使得它比全鋼結(jié)構(gòu)摩天大廈更堅實。</p><p> 設計者有意的將混凝土結(jié)構(gòu)的迪拜塔設計成“y”形狀的來減少風荷載對它的影響,同時也簡化結(jié)構(gòu)提高施工的可行性。結(jié)構(gòu)系統(tǒng)可以用“板根狀”核心。每一翼上面的高性能混凝土走廊和周圍的柱子通過位于核心的六邊形集合板和其他的翼相連。
50、這個特點使得迪拜塔具有十足的抗水平荷載和抗扭剛度。Som應用嚴格的幾何來使得塔內(nèi)的中心和墻柱得以均衡受力。建筑的每一層都設置了螺旋形的墊層。這種裝置是通過塔的布置格式設定,這樣那個墊層就能準確的被安置通過矯正柱子和相面的墻來提供一個聯(lián)系順滑的路線。這樣就可以使得建設不用碰到柱子運輸過程中所碰到的種種問題從而順利進行。</p><p> 迪拜塔的被設置成每一個單元的寬度都是不一樣的。階梯狀和尖狀的優(yōu)勢是可以削弱分
51、散風力。因為每一層的形狀都不一樣所以漩渦風不會形成。整個塔當前還正在建設當中,而這個項目計劃在2008年封頂。</p><p><b> 建筑設計</b></p><p> 迪拜塔坐落于迪拜的市中心,Uae,驅(qū)動著城市的文化歷史,并且對局部區(qū)域產(chǎn)生了重大影響。</p><p> 位于中心以六邊形分布的核心墻為給結(jié)構(gòu)所提供的抗扭力相當于一個
52、套管或者車軸,在結(jié)構(gòu)的外表提供一個堅實結(jié)構(gòu)。正六邊形的墻體是通過翼緣板來加固的,而這也是作為梁的用于抵抗剪力和偶然荷載的翼緣板和凸出部分。</p><p> 在機動層的桁架使得柱子可以一起抵抗位于結(jié)構(gòu)的側(cè)向上的荷載。因此,所有的垂直的混凝土在水平和重力兩個方向上都有得到了應用。特種水泥的強度能達到c80到c60立方體強度,原料包括用波蘭水泥和火山灰。</p><p> 而混凝土是用當?shù)?/p>
53、的攪拌器攪拌的。占少數(shù)比例的C80的混凝土在第90天的初期彈性模數(shù)有43,800 N/mm2。墻體和柱子的最佳的尺寸都是用L綜合方法算出來的,而這時使得整體結(jié)構(gòu)被利用得很充分合理?;炷两Y(jié)構(gòu)的設計是根據(jù) aci318-02混凝土建筑標準規(guī)范的要求設計的。</p><p> 墻的厚度和柱子的尺寸是互相協(xié)調(diào)的,較少了各個構(gòu)件因為滑移和收縮而產(chǎn)生的不良影響。為了減少因為滑移所造成的不同柱子縮短的影響,周邊的柱子的尺寸
54、是這樣制定的:結(jié)構(gòu)自重在周邊柱子產(chǎn)生的壓力加上建筑在內(nèi)走廊的墻所產(chǎn)生的壓力。分布于建筑內(nèi)的5榀桁架把所有的承受豎向荷載的構(gòu)件聯(lián)系了起來,進一步保證了整體的豎向承載力,因此。</p><p> 塔的頂部是由運用一個斜向支撐側(cè)向系統(tǒng)的鋼塔尖。這個鋼結(jié)構(gòu)塔尖是根據(jù)《美國鋼結(jié)構(gòu)協(xié)會關于鋼結(jié)構(gòu)建筑的荷載規(guī)定和抵抗因素設計說明》的相關要求去設計的,用來抵抗重力,風力,地震和疲勞的破壞。暴露在外的鋼構(gòu)件是用焊接在外的鋁箔來保
55、護的</p><p><b> 自身重力受力分析</b></p><p> 結(jié)構(gòu)的重力(非幾何線性分析),風,地震荷載是通過8.4版本的結(jié)構(gòu)軟件來分析的。三維模型的組成包括:混凝土墻體,連系梁,板,筏板,樁,還有鋼塔尖系統(tǒng)。全部的三維結(jié)構(gòu)分析有共有73500個板件和75000個節(jié)點。在側(cè)向風荷載作用下,建筑的偏斜程度被控制在正常規(guī)定下。結(jié)構(gòu)的動態(tài)分析顯示了第一振動
56、周期為11.3秒。而第二振動模型的振動周期為10.2秒。涉及扭轉(zhuǎn)的第十五個模型的振動周期為4.3。</p><p><b> 選址評估分析。</b></p><p> 迪拜當局政府制定迪拜為一個(美國97抗震規(guī)范)2a地震區(qū)()。地震分析包括指定的地點回應光譜分析。地震荷載一般不能主導整個鋼筋混凝土塔結(jié)構(gòu)的設計。但是地震荷載卻能夠左右鋼筋混凝土臺和塔式的鋼結(jié)構(gòu)的設
57、計。</p><p> ?。ò拇罄麃喯つ岬慕Y(jié)構(gòu)原理和動態(tài)結(jié)構(gòu)資訊工程師顧問)撰寫了該地址的包含一次地震所可能帶來的災難情況的地震預測分析報告。各種潛在的液化液體通過幾種被廣泛認可的方法調(diào)查研究。在這里這些液化的液體被認為是對塔深部基礎在結(jié)構(gòu)上的沒有任何的影響的。</p><p> .除了標準立方體試塊實驗,筏板混凝土在被送至安裝之前也在流動性試驗臺上通過了局部的強度測驗。塔的基礎由筏形樁
58、臺構(gòu)成。這堅硬的鋼筋混凝土筏板有3.7米厚,并且采用的是c50的加強混凝土。筏板分成獨立的四塊灌溉而成。每一塊筏板都要花費24個小時才能完成灌溉。</p><p> 整個塔的筏型基礎是由194根轉(zhuǎn)孔灌注樁支撐。樁的直徑有1.5米長度有43米長,每根都能夠承重3000噸的重力。而實際上通過測試可以達到6000噸的承載力。而添加聚合物(潤滑劑的c60的混凝土時通過是混凝土導管來輸送的。摩擦樁是通過混凝土表面和巖石表
59、面的聚結(jié)作用來實現(xiàn)承載的,而在底部樁體和巖土的摩擦力能夠達到250到300kpa。黨鋼筋籠被放置入樁孔的時候,這個時候特別注意和確定鋼筋籠的位置,這樣筏形基礎的鋼筋就能夠背及時放入部分的樁中而無需再特意地去中斷混凝土的灌溉,這樣可以大大的簡化筏型基基礎的施工。</p><p> 地址的巖土勘探情況如下:</p><p> 第一階段:23個轉(zhuǎn)孔,其中有三個佩帶有承載力測試,轉(zhuǎn)深到90米。
60、</p><p> 第二個階段:3個轉(zhuǎn)孔,通過地球物理勘探。</p><p> .第三個階段:六個轉(zhuǎn)孔,兩個通過承載力測試,深度達到60米。</p><p> 第四階段:1個轉(zhuǎn)孔,深度140米。</p><p> 三維基礎沉降量模型是建立在上述的巖土勘探和樁荷載測試結(jié)果的基礎上的。已有規(guī)定長期的最大沉降量為80mm?;A的上部的所有的
61、重量將會使得基礎慢慢彎曲。當施工達到了135層時,基礎的平均沉降將達到30mm。這個巖土研究由。。和。。負責嚴加注意。</p><p> 迪拜的地下水舍得迪拜的地下結(jié)構(gòu)經(jīng)受的著嚴峻的環(huán)境,地下水的氯聚合物含量達到了4.5%而硫化物含量也達到了0.6%。這比海水中所發(fā)現(xiàn)的含量還高。相應的,在設計的時候就要考慮到樁和筏形基礎的抗腐蝕能力。樁身的混凝土由25%粉煤灰7%石英粉和水灰比0.32的混凝土漿。這種混凝土還能
62、夠自壓實,外加參合劑來克服混凝土的一些施工缺陷。</p><p> 在由于地下腐蝕性水所帶來的高挑戰(zhàn)性下,為了確保基礎的抗腐蝕能力而要求要做一項嚴格的腐蝕性測試。測試的工具包括專業(yè)化的防水系統(tǒng)測試,抗腐蝕添加劑所對混凝土帶來的影響,還有嚴格抗裂設計要求,以及用電級保護(利用鈦網(wǎng)和外加電流)。</p><p><b> 風荷載設計</b></p>&l
63、t;p> 對于這樣一座高而細長的建筑,風荷載和和風荷載在高層的效應成為了結(jié)構(gòu)設計的主導問題。大量的風洞試驗和相關研究在策劃下進行。風洞測驗包括了剛性模型平衡力測試,和在各種墊板不懂自由空氣彈性模型的學習,還有當?shù)氐娘L壓測試,以及局部的風環(huán)境以及風氣候研究。風洞試驗模型考慮到了風經(jīng)過建筑所引起的漩渦效應及其對建筑的影響。空氣彈性變形和荷載平衡是按照模型比為1:500的比例進行的。而迪拜風洞工程是由西安大略大學的邊界層風洞實驗室來監(jiān)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論