版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 基于FPGA的數(shù)字信號發(fā)生器的設(shè)計</p><p> 在現(xiàn)代電子測量技術(shù)的研究及應(yīng)用領(lǐng)域中,常常需要高精度且參數(shù)可調(diào)的信號源。數(shù)字信號發(fā)生器已成為現(xiàn)代測量領(lǐng)域應(yīng)用最為廣泛的通用儀器之一,代表了信號源的發(fā)展方向。而隨著大規(guī)??删幊踢壿嬈骷﨔PGA的發(fā)展以及可編程片上系統(tǒng)(SOPC)設(shè)計技術(shù)的日漸成熟,為這類信號發(fā)生器的設(shè)計與實現(xiàn)提供了理論依據(jù)與技術(shù)支持。本文設(shè)計的數(shù)字信號發(fā)生器以直接數(shù)字頻率
2、合成(DDS)技術(shù)為核心,用現(xiàn)場可編程門陣列(FPGA)來實現(xiàn)頻率和相位的預(yù)置和改變,并完成信號的頻率和相位差顯示。設(shè)計中采用的是直接數(shù)字頻率合成(DDS)技術(shù),該技術(shù)是一項關(guān)鍵的數(shù)字技術(shù),能很好的實現(xiàn)信號在幅度,頻率以及相位等方面的移動。系統(tǒng)以EDA軟件為工具,采用VHDL語言,滿足了對數(shù)字信號控制的更高要求。結(jié)果表明,采用EDA技術(shù)設(shè)計的數(shù)字信號發(fā)生器使得數(shù)控系統(tǒng)與其他的電路實現(xiàn)的數(shù)字信號發(fā)生器相比具有更高的可靠性、實時性、運算速度
3、高以及集成度高等特點。該數(shù)字信號發(fā)生器的設(shè)計可像軟件一樣隨時更改,這就為系統(tǒng)維護帶來了方便,同時結(jié)合FPGA有效地擴展輸出波形的頻率范圍,實現(xiàn)了輸出兩路高精度相位差的正弦信號,使系統(tǒng)性能穩(wěn)定可靠。</p><p> 關(guān)鍵詞:信號發(fā)生器;DDS;片上可編程系統(tǒng);FPGA;</p><p><b> 1 導(dǎo)言</b></p><p> FPG
4、A本質(zhì)上是一種數(shù)字設(shè)備。然而,隨著FPGA的資源合理使用,使用FPGA進行數(shù)字化多通道模擬波形成為了一種可能。數(shù)字化的波形可直接在FPGA內(nèi)部處理。目前有幾種模擬信號數(shù)字化的可能的方案。我們計劃在FPGA 模數(shù)轉(zhuǎn)換器的研究中使用一種基于在圖1所示的斜坡比較的方法。</p><p> 圖1 基于FPGA的模數(shù)轉(zhuǎn)換器</p><p> 模擬輸入均直接連接到FPGA的輸入引腳。一個無源RC網(wǎng)
5、絡(luò)連接到FPGA的輸出引腳,以便生成定期參考電壓斜坡。當(dāng)參考電壓斜坡到達輸入電壓等級時,差分輸入緩沖器被用作比較器來產(chǎn)生FPGA內(nèi)部邏輯轉(zhuǎn)換。轉(zhuǎn)換時間是通過TDC塊在FPGA中實現(xiàn)被數(shù)字化的。從這段時間以后,RC網(wǎng)絡(luò)參數(shù)和坡道起動時間可以從已知的輸入電壓大小而得到。如今,F(xiàn)PGA器件被設(shè)計成與各種差分信號標(biāo)準兼容以后,差分輸入緩沖器由于其有效的大的輸入電壓范圍成為了很好的比較器。許多基于比較器的ADC方案可以用FPGA來實現(xiàn)。例如,通過
6、計劃,在較大的FPGA資源使用下(通常是每通道4個I / O引腳),信號可以被迅速地跟蹤,并且只產(chǎn)生很小的數(shù)字化誤差。隨著威爾金森破敗的計劃,負責(zé)窄脈沖一體化可以用數(shù)字化來結(jié)合,盡管越來越多的外部模擬電路是必要的。我們在此研究的斜坡比較方案(或者在分類借鑒基礎(chǔ)上的單斜坡ADC,盡管這兩個坡道的斜坡可以被利用)是對于相對緩慢的信號大通道數(shù)的應(yīng)用的一種合適的選擇。 (在一些參考資料里,單斜坡計劃被誤認為是參照基于雙斜坡原則的威爾金森ADC。
7、)一個關(guān)鍵的功能塊,時間數(shù)字轉(zhuǎn)換器(TDC)在FPGA是需要的。有</p><p> 在FPGA中的TDC已經(jīng)非常有用了。為費米實驗室MIPP升級項目設(shè)計的TDC卡在論文中也有記載。 多采樣結(jié)構(gòu)可以有其他的應(yīng)用。被熟知的“數(shù)字相位跟隨”(DPF)的解串器電路也有記載。使用DPF,任何FPGA輸入都可用于接收串行數(shù)據(jù)而無需專門的解串器,這些解串器只能由高端FPGA系列提供。該DPF可以補償由于電纜溫度的變
8、化或者由于晶體振蕩器發(fā)射機和接收機之間的頻率差而造成的輸入數(shù)據(jù)的相位漂移。</p><p> 2 TDC在FPGA中的運行</p><p> 在FPGA中的TDC是基于多相位時鐘的。TDC的輸入是通過四個寄存器被采樣的,這些寄存器有四個相位的時鐘。如圖2所示。</p><p> 圖2 多抽樣的TDC電路</p><p> 輸入被緩沖,
9、然后以同樣的傳播延遲發(fā)送到四個寄存器。這四個寄存器連接到有90°相位差的四個內(nèi)部時鐘上。0度和90度的時鐘通過相鎖回路(PLL)時鐘合成器產(chǎn)生。他們的倒置用于產(chǎn)生180度和270度的時鐘。根據(jù)到達時間,有關(guān)的輸入邏輯電平轉(zhuǎn)換被記錄在不同地點的四個寄存器內(nèi)。我們在Altera的Cyclone FPGA器件設(shè)備(EP1C6Q240C6)使用的時鐘頻率是360兆赫,它提供了0.69納秒(LSB)的時間分辨率。一個單相的時鐘域轉(zhuǎn)移出現(xiàn)
10、在第二和第三個記錄層。然后輸入信號的到達時間是編碼為兩個時間位(T0和T1)和一個數(shù)據(jù)有效信號(DV),計數(shù)器提供了一個命令時位。</p><p> 過渡邊緣檢測和脈沖濾波邏輯都包含在編碼器內(nèi)。對于許多應(yīng)用程序,一個簡單的領(lǐng)先優(yōu)勢編碼就足夠了。例如在一些應(yīng)用中,從一電線室估計輸入脈沖,前緣和后緣都可以數(shù)字化。在這種情況下,一個額外的輸出顯示邊緣的類型可能會需要。該脈沖濾波功能可以防止輸入電路鈴聲由于被錯誤數(shù)字化
11、而造成的超短脈沖。我們設(shè)計到連續(xù)四個位的位量子點至Q3模式使用了通過查找表的FPGA邏輯單元,以確定一個采樣點是否在一個完善的脈沖邊緣?;叵胍幌率褂貌檎冶淼腇PGA,它可以實現(xiàn)“任何“四個輸入的組合邏輯,滿足邊緣檢測和脈沖過濾的應(yīng)用要求。</p><p> 時序關(guān)鍵的信號通路通過設(shè)置輸入緩沖區(qū)來控制,多采樣寄存器和FPGA的內(nèi)部時鐘域轉(zhuǎn)移寄存器如圖3所示。這種對稱的布局,保證從輸入緩沖區(qū)到采樣寄存器的一致的傳播
12、延遲,從而獲得均勻的位寬,最大限度地減少微分非線性。</p><p> 圖3 FPGA中的時序關(guān)鍵路徑 </p><p> 邏輯元件布局由“手動“的電子數(shù)據(jù)表完成。所有的TDC通道(每通道約10項)在輸入緩沖區(qū)和觸發(fā)器的位置都被保存在電子表格。在Cyclone FPGA器件中,四個通道都被集中在五個邏輯陣列塊(LAB)里,如上面所示。設(shè)計者可能會進一步安排好每一個4通道組的位置去不斷調(diào)
13、整從輸入引腳的輸入延遲組,便于使不同群體的傾斜通道的最小化。試算表是編碼到輸出一個ASCII的文件,這個文件粘貼到為Quartus II與Altera FPGA設(shè)計軟件的編制的指定文件中。</p><p> 3 基于FPGA的模數(shù)轉(zhuǎn)換器測試結(jié)果</p><p> FPGA的ADC的幾次試驗已經(jīng)完成,如圖1所示電路。具有兩個值集的R1,R2和C來實現(xiàn)斜坡參考電壓不同的時間常數(shù)。</
14、p><p><b> 線性參考電壓擬</b></p><p> 在第一次配置,R1的值為50歐姆,R2為100歐姆,C =1000pF。FPGA用切換率為11.25 MHz,3.3V的差分電壓驅(qū)動RC網(wǎng)絡(luò)。該參考電壓幾乎是一個沒有太多指數(shù)功能的三角波。輸入到ADC的電壓和參考電壓的示波器的波形如圖4所示。ADC的輸入是四個不同寬度和峰值振幅的脈沖序列。</p&g
15、t;<p> 圖4 ADC輸入(藍色)輸入和參考電壓(黑色)</p><p> 輸入信號是由參考電壓每88ns在兩次開頭和結(jié)尾的坡道和每一次穿過坡道創(chuàng)建的一個由TDC數(shù)字化的翻轉(zhuǎn)邊緣。采樣率大約是每秒采樣22.5兆,??(雖然前端和后斜采樣點的采樣間隔是不一樣的)。轉(zhuǎn)換時期前端和后斜道的采樣是由6位的測量范圍的TDC來數(shù)字化的。 TDC的原始數(shù)據(jù)都顯示在圖5(a)中。轉(zhuǎn)換時間進一步轉(zhuǎn)化為輸入電壓
16、的水平,如圖5(b)所示。</p><p> 圖5 (a)TDC的原始數(shù)據(jù) (b)數(shù)字化波形</p><p> 應(yīng)當(dāng)指出,TDC的值不僅僅代表著采樣點的電壓水平,而且還代表著采樣時間。在高精度應(yīng)用中,采樣時間的分歧應(yīng)該予以考慮,但這不是太困難的事。</p><p> B、指數(shù)參考電壓 RC網(wǎng)絡(luò)的放電性能指數(shù),可用于提高ADC的動態(tài)范圍。在第二個配置
17、中,R1的值為50歐姆,R2為100歐姆,電容C為150pF。參考電壓如圖6所示,它有一個很短的時間常數(shù)。</p><p> 圖6 參考電壓的放電性能指數(shù)</p><p> 該指數(shù)樣本的輸入?yún)⒖茧妷翰ㄐ稳鐖D7(a)所示。(請注意,圖6和圖7(a)的示波器時間尺度不同,但它們的電壓表是相同的。)由圖7(b)可以看出,一個平滑的波形通過尾隨的坡道被數(shù)字化了。該測試展示了一個以22.5兆每秒
18、的采樣速率的6位的測量范圍,而樣本的尾部坡道動態(tài)范圍大約是8位。</p><p> 圖7 (a)輸入波形(b)數(shù)字化波形</p><p> 被動元件被選擇為下一代網(wǎng)絡(luò)的參考電壓斜坡,主要是為了簡單。被動的RC網(wǎng)絡(luò)的斜坡電壓在本質(zhì)上是非線性,這在有時被認為是一種缺陷。然而,在FPGA種,糾正非線性僅僅是通過查表來進行變換的。在我們的例子中,指數(shù)電壓斜坡可進一步用于增加測量的動態(tài)范圍,這已
19、經(jīng)成為一種優(yōu)勢。 在許多應(yīng)用中,測量時只需要相對精度,也就是說,精細測量只應(yīng)用在小信號中,而對大信號來說,粗精度的測量已經(jīng)足夠了。</p><p><b> 4 總結(jié)</b></p><p> 研究了基于TDC的多采樣,實施了低成本FPGA和測試臺的三個應(yīng)用:僅TDC下的多通道的FPGA, 僅在 ADC下的FPGA和一個解串器“數(shù)字相位跟隨器”的討論。FP
20、GA接口直接與連續(xù)變量(抵達時間和輸入電壓)相接,單TDC的多通道FPGA, 單 ADC的FPGA和一個解串器“數(shù)字相位跟隨器” 三個應(yīng)用正在討論中。FPGA與連續(xù)變量(抵達時間和輸入電壓)直接相接,可以消除外部設(shè)備,并簡化系統(tǒng)設(shè)計。這種測量的實現(xiàn)可立即在FPGA中處理,而無需通過總線上的數(shù)據(jù)。</p><p> The Design of Digital Signal Generator Based on F
21、PGA </p><p> Signal sources with high accuracy and operational frequency are used in the field of research and application of modern electronic measuring technology. Digital signal represent the development
22、 with it being one of the most widely measuring technology in the field. With the development of FPGA in a large scale and the maturing of SOPC, design technology have provided theoretical basis and technology support fo
23、r the design and realization of such signal generators. This design of digital signal g</p><p> Keywords: signal generator; DDS; System On a Programmable Chip; The FPGA</p><p> I. INTRODUCTION
24、</p><p> FPGA is a digital device. However, with suitable use of the FPGA resources, it is possible to use FPGA to digitize multi-channel analog waveforms. The digitized waveforms can be directly processes
25、in the FPGA. There are several possible schemes of digitizing analog signals. One of the schemes we used in our FPGA ADC study is based on the ramping-comparing approach as shown in Fig.1.</p><p> The analo
26、g inputs are directly connected to the FPGA input pins. A passive RC network is connected to the FPGA output pins so that a periodic reference voltage ramp can be generated. The differential input buffers are used as com
27、parators to generate logic transitions inside the FPGA when the reference voltage ramps across the input voltage levels. The transition times are digitized by the TDC block implemented in the FPGA. Since the period, the
28、RC network parameters and the starting time of the </p><p> In today’s FPGA devices, differential input buffers are good comparators within a sufficiently large range of input voltage levels, since they are
29、 designed to be compatible with various signaling standards. Many comparator-based ADC schemes can be implemented with FPGA. For example, with the delta-sigma scheme. the signal can be tracked promptly yielding smaller d
30、igitization errors at a cost of higher FPGA resource usage (typically, 4 I/O pins per channel). With Wilkinson rundown scheme, charge </p><p> A key functional block, Time-to-Digit-Converter (TDC) is neede
31、d in FPGA. There are two TDC schemes that can be implemented in FPGA: delay chain scheme and multisampling scheme . The TDC we used in this work is multisampling scheme with quad clock as in Reference . In Reference , fo
32、ur sets of sample, edge detect, pulse filter and count latch are driven by four clocks with 90o phase separations. These four sets of data collected by four sets of circuits are excessive and they become valid at diff<
33、;/p><p> The TDC in FPGA alone is already very useful. The TDC card designed for Fermilab MIPP upgrade project is documented in this paper.</p><p> The multi-sampling structure can have other app
34、lications. A deserializer circuit known as “Digital Phase Follower” (DPF) is also documented. Using DPF, any FPGA input can be used to receive serial data without needing dedicated deserializer that is only available in
35、high-end FPGA families. The DPF can compensate input data phase drift not only due to cable temperature variation, but also due to crystal oscillator frequency difference between transmitter and receiver.</p><
36、p> II. TDC IMPLEMENTED IN FPGA</p><p> The TDC inside the FPGA is based on multi-phased clock. The input of the TDC is sampled by four registers with four phases of the clock as shown in Fig. 2</p>
37、;<p><b> ..</b></p><p> The input is buffered, and then sent to four registers with equal propagation delays. The four registers are connected to four internal clocks each with 90o phase
38、 difference. The 0o and 90o clocks are generated by the phase-lock-loop (PLL) clock synthesizer and their inversions are used for 180o and 270o clocks. Depending on arrival time, the transitions of the input logic level
39、s are recorded at different locations within the four registers. The clock frequency used in our Altera Cyclone FPGA d</p><p> Transition edge detection and pulse filtering logics are included in the encode
40、r. For many applications, a simple leading edge encoding is sufficient. In some applications, for example, to estimate input pulse charge from a wire chamber, both leading and trailing edges may be digitized. An addition
41、al output indicating the type of edge may be needed in this case. The function of pulse filtering prevents ultra short pulses due to input circuit ringing from being mistakenly digitized. In our design</p><p&g
42、t; Timing critical signal paths are controlled by placing the input buffer, multi-sampling registers and clock domain transfer registers in the FPGA as shown in Fig. 3. This symmetric placement assures equal propagation
43、 delays from input buffer to the sampling registers, resulting in uniform bit widths and thus minimizes differential non-linearity.</p><p> The logic element layout is done “manually” with a spread sheet. T
44、he locations of the input buffer and flip-flops, (about 10 items per channel) for all TDC channels are kept in the spread sheet. In Cyclone FPGA devices, four channels are grouped together in five logic array blocks (LAB
45、) as shown above. The designer may further arrange the location of each four-channel group to adjust the input delay from input pin to the group so that the skews between different channel groups are minimized. The</p
46、><p> III. TEST RESULTS OF FPGA BASED ADC</p><p> Several tests of FPGA ADC are done with circuits shown in Fig. 1 with two sets of values of R1, R2 and C to achieve different time constants for
47、the ramping reference voltage..</p><p> A. Quasi-linear Reference Voltage</p><p> In the first configuration, the values of R1 = 50, R2 = 100 and C = 1000pF. The FPGA drives the RC network wit
48、h a toggling rate of 11.25 MHz in differential 3.3V level. The reference voltage is nearly a triangle wave with not much exponential feature. The oscilloscope traces of the input voltage to the ADC and the reference volt
49、age are shown in Fig. 4. The input to ADC is a sequence of four pulses with different widths and peak amplitudes.</p><p> The input signal is crossed by the reference voltage twice every 88ns by both leadin
50、g and trailing ramps and each crossing creates a flipping edge that is digitized by the TDC. The sampling rate is approximately 22.5 M samples/sec, (although the sampling intervals between the points sampled by the leadi
51、ng and trailing ramps are not the same). The transition times sampled by both the leading and trailing ramps are digitized by the TDC with 6-bit measurement range. The raw TDC data are shown in Fi</p><p> I
52、t should be pointed out that the TDC values represent not only the voltage levels at the sampling points, but also the sampling times. In high precision applications, the differences of the sampling times should be taken
53、 into account but it is not too difficult to do so.</p><p> B. Exponential Reference Voltage</p><p> The exponential discharge property of the RC networks can be used to increase the dynamic r
54、ange of the ADC. In the second configuration, the values of R1 = 50, R2 = 100 and C = 150pF. The reference voltage shown in Fig. 6 has a short time constant.</p><p> The exponential reference voltage sample
55、s the input waveform shown in Fig. 7(a). (Note that the oscilloscope time scales for Fig. 6 and 7(a) are different but the voltage scales are them same.) It can be seen from Fig. 7(b) that a smoother waveform is digitize
56、d by the trailing ramp. This test shows a 6- bit measurement range at 22.5 M samples/sec while the dynamic range of the trailing ramp samples is approximately 8 bits.</p><p> Passive components are chosen f
57、or the ramping reference voltage generation network primarily for simplicity. The ramping voltage from passive RC network is intrinsically nonlinear which sometimes is viewed as a disadvantage. In FPGA, however, correcti
58、ng nonlinearity is merely a transform via a look-up table. In our example here, the exponential voltage ramp can be further used to increase measurement dynamic range, which becomes an advantage.</p><p> In
59、 many applications, only relative precision in a measurement is needed, i.e., finer measurements are only needed for small signals while for larger signals, coarser measurements are sufficient.</p><p> IV.
60、CONCLUSION</p><p> Multi-sampling based TDC has been studied, implemented in low cost FPGA and bench tested.</p><p> Three applications: multi-channel FPGA-only TDC, FPGA only ADC and a deseri
61、alizer “Digital Phase Follower” are discussed. Interfacing FPGA directly with the continuous variables (arrival time and input voltage) eliminates external devices and simplifies system design. The measurement made can b
62、e processed immediately in the FPGA without having to pass data via on board busses.</p><p> REFERENCES</p><p> [1] P. Allen & D. Holberg, CMOS Analog Circuit Design, Second Edition, New Y
63、ork, New York: Oxford University Press, 2002.</p><p> [2] B. G. Tomov & J. A. Jensen, “A new architecture for a single-chip multi-channel beamformer based on a standard FPGA,” in Ultrasonics Symposium,
64、2001 IEEE, 7-10 Oct. 2001 Page(s):1529 - 1533 vol.2.</p><p> [3] D. Wilkinson, “Blood, Birds, and the Old Road,” in Annu. Rev. Nucl. Part. Sci. 1995, Pages 1-39, vol. 45.</p><p> [4] G. Blanar
65、, K. Roberts & R. Sumner, “A new concept for a multi-range low cost calorimeter ADC,” in Nuclear Science Symposium and Medical Imaging Conference, 1994 IEEE Conference Record, 30 Oct.- 5 Nov. 1994 Page(s):999 - 1001
66、vol.2.</p><p> [5] Jinyuan Wu, Zonghan Shi & I. Y. Wang, “Firmware-only</p><p> implementation of time-to-digital converter (TDC) in field</p><p> programmable gate array (FP
67、GA),” in Nuclear Science Symposium</p><p> Conference Record, 2003 IEEE, 19-25 Oct. 2003 Page(s):177 - 181</p><p><b> Vol. 1.</b></p><p> [6] S. S. Junnarkar, et. al.
68、, “An FPGA-based, 12-channel TDC and digital signal processing module for the RatCAP scanner,” in Nuclear Science Symposium Conference Record, 2005 IEEE, Volume 2, 23-29 Oct. 2005 Page(s):919 - 923.</p><p>
69、 [7] M. D. Fries & J. J. Williams, “High-precision TDC in an FPGA using a 192 MHz quadrature clock,” in Nuclear Science Symposium Conference Record, 2002 IEEE, 10-16 Nov. 2002 Page(s):580 – 584 vol. 1.</p><
70、;p> [8] Altera Corp., “Cyclone FPGA Family Data Sheet”, (2003) available via: {http://www.altera.com/}</p><p> [9] Altera Corporation, “Cyclone II Device Handbook”, (2007) available via: {http://www.alt
71、era.com/}</p><p> [10] Jinyuan Wu, “Digital Phase Follower -- Deserializer in Low-Cost FPGA”, BTeV Document 3295-v1, Fermi National Accelerator Laboratory, (2004), available online: {http://www-btev.fnal.go
72、v/cgibin/ public/DocDB/ShowDocument?docid=3295}</p><p> [11] Nick Sawyer, “Data Recovery”, Xilinx Application Note 224, v2.5 (2005), available via: {http://www.xilinx.com}</p><p> [12] Jinyuan
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于fpga的任意信號發(fā)生器畢業(yè)論文
- 基于dsp的任意信號發(fā)生器設(shè)計
- 基于fpga的信號發(fā)生器設(shè)計
- 基于FPGA與DDS技術(shù)的任意波信號發(fā)生器設(shè)計.pdf
- 基于fpga的信號發(fā)生器的設(shè)計
- 基于DDS的任意信號發(fā)生器設(shè)計.pdf
- 基于fpga任意波形發(fā)生器的設(shè)計開題報告
- 基于fpga的dds信號發(fā)生器設(shè)計
- fpga實現(xiàn)的任意波形發(fā)生器的設(shè)計
- 基于fpga的dds信號發(fā)生器設(shè)計開題
- 基于fpga的信號發(fā)生器設(shè)計6波形
- 基于FPGA的函數(shù)信號發(fā)生器設(shè)計.pdf
- 基于dds的任意信號發(fā)生器設(shè)計【開題報告】
- 基于fpga的函數(shù)信號發(fā)生器
- 基于fpga信號發(fā)生器畢業(yè)設(shè)計
- 基于DDS的任意波形信號發(fā)生器.pdf
- 基于FPGA技術(shù)的信號發(fā)生器設(shè)計.pdf
- 基于FPGA的同步信號發(fā)生器設(shè)計.pdf
- 基于DDS技術(shù)的任意波形信號發(fā)生器設(shè)計.pdf
- 基于PCI總線的任意波形信號發(fā)生器設(shè)計.pdf
評論
0/150
提交評論