版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 外文文獻: </b></p><p> Evaluating Water Conservation Measures For Green Building In Taiwan</p><p> Green Building evaluation is a new system in which water conservation i
2、s prioritized as one of its seven categories for saving water resources through building equipment design in Taiwan. This paper introduces the Green Building program and proposes a water conservation index with quantitat
3、ive methodology and case study. This evaluation index involves standardized scientific quantification and can be used in the pre-design stage to obtain the expected result. The measure of evaluation index is a</p>
4、<p> in Taiwan and is a practical and applicable approach.</p><p> Keywords: Green Building; Evaluation system; Water conservation; Building equipment </p><p> 1. Introduction</p>
5、;<p> The environment was an issue of deep global concern throughout the latter half of the 20th century. Fresh water shortages and pollution are becoming one of the most critical global problems. Many organizati
6、ons and conferences concerning water resource policy and issues have reached the consensus that water shortages may cause war in the 21st century[1],if not a better solution .Actually, Taiwan is already experiencing sign
7、ificant discord over water supply. Building new dams is no longer an accep</p><p> that water savings are necessary not only for water conservation but also for reducing energy consumption [2,3].</p>
8、<p> Taiwan is located in the Asian monsoon area and has an abundant supply of rainwater. Annual precipitation averages around 2500mm. However, water shortages have recently been a critical problem during the dry
9、season. The crucial, central issue is the uneven distribution of torrential rain, steep hillsides, and short rivers. Furthermore, the heavy demand for domestic water use in municipal areas, and the difficulties in buildi
10、ng new reservoirs are also critical factors. Government departments are </p><p> Due to this global trend, the Architecture and Building Research Institute (ABRI), Ministry of Interior in Taiwan, proposed t
11、he “Green Building” concept and built the evaluation system. In order to save water resources through building equipment design, this system prioritizes water conservation as one of its seven categories. This paper focus
12、es on the water conservation measures for Green Building in Taiwan and a quantitative procedure for proving water-saving efficiency. The purpose of this wo</p><p> impact on the earth.</p><p>
13、 2. Water conservation index</p><p> The water conservation index is the ratio of the actual quantity of water consumed in a building to the average water-consumption in general. The index is also called, “
14、the water saving rate”. Evaluations of the water-consumption quantity include the evaluation to the water-saving efficiency within kitchens, bathrooms and all water taps, as well as the recycling of rain and the secondha
15、nd intermediate water.</p><p> 2.1. Goal of using the water conservation index</p><p> Although Taiwan has plenty of rain, due to its large population, the average rainfall for distribution to
16、 each individual is poor compared to the world average as shown in Fig. 1.Thus, Taiwan is reversely a country short of water. Yet, the recent improvements in citizens’ standards of living have led to a big increase in th
17、e amount of water needed in cities, as shown in Fig. 2, which, accompanied by the difficulty of obtaining new water resources, makes the water shortage problem even worse. Due</p><p> The promotion of bette
18、r-designed facilities which facilitate water-saving will become a new trend among the public and designers, because of concerns for environmental protection. The water conservation index was also designed to encourage ut
19、ilization of the rain, recycling of water used in everyday life and use of water-saving equipment to reduce the expenditure of water and thus save water resources.</p><p> 2.2. Methodology for efficient use
20、 of water resources</p><p> Some construction considerations and building system designs for effective use of water resources are described below.</p><p> 2.2.1. Use water-conservation equipme
21、nt</p><p> A research of household tap-water consumption revealed that the proportion of the water used in flushing toilets and in bathing, amounts to approximately 50% of the total household water consumpt
22、ion, as given in Table 1. Many construction designers have tended to use luxurious water facilities in housing, and much water has thus been wasted. The use of water-saving equipment to replace such facilities is certain
23、 to save a large amount of water. For example, the amounts of water used in taking a </p><p> 2.2.2. Set up a rain-storage water supply device</p><p> The rain-storage water supply device stor
24、es rain using natural landforms or man-made devices, and then uses simple water-cleaning procedures to make it available for use in houses. Rain can be used not only as a substitute water supply, but also for re control.
25、 Its use also helps to decrease the peak-time water load in cities. The annual average rainfall in Taiwan is about 2500 mm, almost triple better than the global average. However, due to geographic limitations, we could n
26、ot build enough wat</p><p> 2.2.3. Establishing the intermediate water system</p><p> Intermediate water is that gathered from the rain in cities, and includes the recycled waste-water which h
27、as already been disposed of and can be used repeatedly only within a certain range, but not for drinking or human contact. Flushing the toilet consumes 35% of all water. If everyone were to use intermediate water to flus
28、h toilets, much water could be efficiently saved. Large-scale intermediate water system devices are suggested to be built up regularly with in a big area. Each intermediate w</p><p> 4. Method for assessing
29、 the recycling of rain</p><p> Systems for recycling rain and intermediate water are not yet economic beneficial, because of the low water fee and the high cost of water-disposal equipment. However, systems
30、 for recycling rain are considered more easily adoptable than those for recycling intermediate water. Herein, a method for assessing the recycling of rain is introduced to calculate the ratio (C) of the water-consumption
31、 quantity of the recycled rainwater to the total water-consumption.</p><p> 4.1. Calculation basis of recycling rainwater</p><p> The designer of a system for recycling rainwater must first de
32、termine the quantity of rainwater and the demand, which will determine the rainwater collection device area and the storage tank volume. Rainwater quantity can actually be determined by a simple equation involving precip
33、itation and collection device area. However, precipitation does not fall evenly spread over all days and locations. In particular, rain is usually concentrated in certain seasons and locations. Consequently, the critic&l
34、t;/p><p> in assessing rainwater systems used in buildings [4,7].</p><p> 4.3. Case study and analysis</p><p> Following the above procedure, a primary school building with a rainwa
35、ter use system is taken as an example for simulation and to verify the assessment results. This building is located in Taipei city, has a building area of 1260 m and a total floor area of 6960 m ; it is a multi-disciplin
36、e teaching building. Roofing is estimated to cover 80% of the building area, and the rainwater collection area covers 1008 m .Rainwater is used as intermediate water for the restrooms, and the utilization condi</p>
37、<p> the out flow coefficient (Y) is 0.9. A typical meteorological precipitation in Taipei in 1992 was adopted as a database. The rainwater storage tank was set to an initial condition before the simulation proce
38、dure. Herein, four tank volumes were considered in the simulations of rainwater utilization—15, 25, 50, 100 m. The results indicate that increased storage tank volume reduces overflow and increases the utilization of rai
39、nwater. Given a 50 m storage tank, the quantity of rainwater collection c</p><p> The efficiency of rainwater storage tanks is assessed from the utilization rate of rainwater and the substitution rate of ta
40、p water. Differences in annual precipitation and rainfall distribution yield different results. Figs. 5 and 6 illustrate the results of the mentioned calculation procedure, to analyze differences in rainwater utilization
41、 and efficiency assessment. The simulation runs over a period often years, from 1985 to 1994, and includes storage tanks with four different volumes. When t</p><p> In the formula of the water conservation
42、index, C is a special weighting for some water recycling equipment that intermediates water or rain, and is calculated as the ratio of the water-consumption quantity of the recycled rainwater to the total water-consumpti
43、on. Therefore, this assessment procedure can also offer an approximate value of C for the water conservation index.</p><p> 5. Green building label and policy</p><p> “Green Building” is calle
44、d “Environmental Co-Habitual Architecture” in Japan, “Ecological Building” or “Sustainable Building” in Europe and “Green Building in North American countries. Many fashionable terms such as “Green consumption”, “Green l
45、iving”, “Green illumination” have been broadly used. In Taiwan, currently, “Green” has been used as a symbol of environmental protection in the country. The Construction Research Department of the Ministry of the Interio
46、r of the Executive Yuan has decided</p><p> 5.1. Principles of evaluation</p><p> Green Building is a general and systematic method of design to peruse sustainable building. This evaluation sy
47、stem is based on the following principles:</p><p> (1) The evaluation index should accurately reflect environmental protection factors such as material, water, land and climate.</p><p> (2) Th
48、e evaluation index should involve standardized scientific quantification.</p><p> (3) The evaluation index should not include too many evaluation indexes; some similar quality index should be combined.</
49、p><p> (4) The evaluation index should be approachable and consistent with real experience.</p><p> (5) The evaluation index should not involve social scientific evaluation.</p><p>
50、 (6) The evaluation index should be applicable to the sub-tropical climate of Taiwan.</p><p> (7) The evaluation index should be applicable to the evaluation of community or congregate construction.</p&g
51、t;<p> (8) The evaluation index should be usable in the pre-design stage to yield the expected result.</p><p> According to these principles, the seven-index system shown in Table 4 is the current G
52、reen Building evaluation system used in Taiwan. The theory evaluates buildings’ impacts on the environment through the interaction of “Earth Resource Input” and “Waste Output”. Practically, the definition of Green Buildi
53、ng in Taiwan is “Consume the least earth resource and create the least construction waste”. </p><p> Internationally, each country has a different way of evaluating Green Building. This system provides only
54、 the basic evaluation on “Low environment impact”. Higher level issues such as biological diversity, health and comfort and community consciousness will not be evaluated. This system only provides a basic, practical and
55、controllable environmental protection tool for inclusion in the government’s urgent construction environment protection policy. The “Green Building” logo is set to award Green</p><p> 5.2. Water conservatio
56、n measure</p><p> This paper focuses on water conservation index in green building evaluation system. Water conservation is a critical category of this evaluation system, and is considered in relation to sa
57、ving water resources through building equipment design. This evaluation index contains standardized scientific quantification and can be used in the pre-design stage to obtain the desired result. The evaluation index is
58、also based on research in Taiwan and is practically applicable. Using water-saving equipment</p><p> A new building can easily reach the above water conservation index. This evaluation system is designed to
59、 encourage people to save more water, even in existing buildings. All this amounts to saying that large-scale government construction projects should take the lead in using such water-saving devices, as an example to soc
60、iety.</p><p> 6. Conclusion</p><p> This paper introduces the Green Building program and proposes a water conservation index with standardized scientific quantification. This evaluation index
61、contains standardized scientific quantification and can be used in the pre-design stage to obtain the expected results. The measure of evaluation index is also based on the essential research on Taiwan and is a practical
62、 and applicable approach. The actual water-saving rate (WR) for Green Building projects should be <0.8, and the AR of the wa</p><p> The Green Building Label began to be implemented from 1st September 19
63、99, and over twenty projects have already been awarded the Green Building Label in Taiwan, while the number of applications continues to increase. For a country with limited resources and a high-density population like T
64、aiwan, the Green Building policy is important and represents a positive first step toward reducing environmental impact and promoting sustainable development. </p><p><b> 中文譯文:</b></p>&
65、lt;p> 臺灣的綠色建筑節(jié)約用水評價措施</p><p> 在臺灣綠色建筑評價是一個新的制度,在它的一個7個類別中,通過建筑設(shè)備設(shè)計節(jié)省水資源,使水資源保護置于優(yōu)先地位。本文介紹了綠色建筑計劃,提出了節(jié)約用水指標用定量方法和案例研究。這個評價指標涉及到規(guī)范的科學量化,可用于預(yù)先設(shè)計階段,以取得預(yù)期效果。在臺灣這項措施的評價指標,也是基于一個現(xiàn)實的和適用的辦法的必需研究。 關(guān)鍵詞:綠色建筑;評價制度;
66、節(jié)約用水;建筑設(shè)備</p><p><b> 1 、導(dǎo)言</b></p><p> 環(huán)境問題在整個20世紀的后半段受到了全球深層關(guān)注。淡水短缺和污染正成為一個最嚴重的全球性問題之一。許多組織與會議就有關(guān)水資源政策和問題達成了共識:如果沒有更好的解決方法,在21世紀水資源短缺可能導(dǎo)致戰(zhàn)爭[ 1 ] 。其實,臺灣已經(jīng)經(jīng)歷了明顯的不和諧的超負荷供水。由于相應(yīng)的環(huán)境問題,
67、建設(shè)新的水壩已不再是一個可以接受的解決當前的水資源短缺問題的辦法。以前的研究得出結(jié)論: 節(jié)水是必要的,不僅是為了節(jié)約用水,而且還為降低能源消耗[ 2,3 ] 。 臺灣位于亞洲季風區(qū),可以獲得充足的雨水。年降水量平均約為2500毫米。但是,最近一個關(guān)鍵的問題在旱季缺水。關(guān)鍵的、核心的問題是分布不均,暴雨,陡峭的山坡和短的河流。此外,為滿足國內(nèi)城市地區(qū)對水的大量利用需求,在用水困難的地區(qū)建設(shè)新的水庫,也是至關(guān)重要的因素。
68、政府部門正全力傳播眾所周知的概念,節(jié)約用水。工業(yè)和商業(yè)在節(jié)約用水方面都取得了良好的進展,而公共場所在節(jié)約用水方面的進步卻一直非常緩慢。由于全球性趨勢,在臺灣的建筑與建筑研究所(ABRI) 還有財政部內(nèi)部,提出"綠色建筑"的概念,并建立了評價指標體系。通過建筑設(shè)備的設(shè)計節(jié)省水資源</p><p> 2、節(jié)約用水指標 節(jié)約用水指標應(yīng)是實際數(shù)量的水消耗在建筑物內(nèi),一般以平均水耗計。這個指數(shù)
69、也被稱為"節(jié)水率" 。評價的水消費量,包括節(jié)水效率的評估,廚房,浴室和所有水龍頭,以及回收的雨水和中水。</p><p> 2.1 、使用節(jié)約用水指數(shù)的目標 </p><p> 雖然臺灣有很多的雨,由于其人口眾多,平均雨量為分配給每一個人相比世界平均水平是很少的。如圖 1所示 。因此,臺灣是反而是用水緊缺的國家。然而,最近由于公民的生活水平的提高,導(dǎo)致城市用水需求較
70、大幅度增長。并如圖2所示 ,其中,再加上很難取得新的水資源,使水資源短缺問題更為嚴重。在過去由于不適當?shù)墓┧O(shè)施的設(shè)計,低水費,以及人們在使用水的一般性行為,使臺灣人往往使用了大量的自來水。在1990年,平均水的消費量在臺灣每人每天是350升,而在德國每人每天約145升,和在新加坡每人每天約150升。這些統(tǒng)計數(shù)字顯示,需要臺灣人民節(jié)約用水。</p><p> 促進設(shè)計更好的節(jié)水設(shè)施,方便節(jié)水將成為一個新趨勢,其
71、中,市民和設(shè)計師,因為關(guān)注的環(huán)保問題。節(jié)約用水指數(shù)也旨在鼓勵利用雨水,中水在日常生活中使用和使用節(jié)水型設(shè)備,以減少使用,從而節(jié)省水資源。</p><p> 2.2 、有效利用水資源的方法 一些為有效利用水資源的施工考慮和建設(shè)系統(tǒng)設(shè)計描述如下面。</p><p> 2.2.1 、使用節(jié)水型設(shè)備 研究家庭自來水消費顯示,用在沖洗廁所和洗澡的比例大約占家庭總耗水量的50 %,
72、如所給表1 。許多建筑設(shè)計師往往在房屋使用豪華的供水設(shè)施,以及大量的水造成浪費。使用節(jié)水型設(shè)備來取代這些設(shè)施可以節(jié)省大量的水。舉例來說,用在淋浴間和浴室的水是不同的。一個單一的淋浴頭使用70升左右的水,而用浴缸洗澡大約使用150升。此外,當前在臺灣房屋的建筑設(shè)計往往設(shè)計兩套浴缸和廁所,不少家庭都有自己的按摩浴缸。要使這種情況得以改善,只有通過淘汰浴缸和更換他們的淋浴噴頭,以節(jié)約更多的水?,F(xiàn)在在臺灣普遍使用節(jié)水型設(shè)備包括新型水龍頭,節(jié)水型
73、廁所,多次使用水的壁櫥,節(jié)水型淋浴噴頭,自動傳感器沖廁裝置系統(tǒng)等。這些節(jié)水設(shè)備不僅用于房屋,而且還可用在其他類型的建筑物。如公共建筑物,特別是要帶頭使用節(jié)水型設(shè)備的公共建筑。</p><p> 2.2.2 、建立一個雨水儲存供水設(shè)備</p><p> 雨水儲存供水設(shè)備儲存雨水是利用自然地貌或人為制造的設(shè)備,利用簡單的水凈化程序,就可以供給用戶使用。雨水不僅可以用來替代淡水供應(yīng),而且可以
74、作為消防用水。它的使用可以減少雨水的高峰期對城市的負荷。在臺灣平均每年降雨量是約2500毫米,幾乎高于全球平均水平的三倍。然而,由于地域限制,我們無法建立足夠的水存儲設(shè)備,如水壩,以保存所有雨水。很可惜的是,在臺灣每年約80 %的雨水被浪費,沒有被保存和儲存,直接流入海中。雨水儲存供應(yīng)系統(tǒng)被作為雨水收集系統(tǒng),水處置系統(tǒng),蓄水系統(tǒng)和供水系統(tǒng)。首先,它作為雨水收集系統(tǒng)用來收集雨水。然后,水流通過管道流向水處理系統(tǒng),之前被送到水的存儲系統(tǒng)。最
75、后,它通過另外的管道送到用戶的設(shè)施。在建筑物屋頂上留下的雨水,可以流向地下蓄水槽。這被認為是一種收集雨水的有效手段。雨水經(jīng)過簡單處理,可用于雜務(wù),如內(nèi)務(wù)清潔,清洗地板,安裝空調(diào)或澆灌植物。</p><p> 2.2.3 、建立中水系統(tǒng)</p><p> 中水是從城市收集的雨水,并包括已處理完畢的再造廢水,并可以在一定范圍內(nèi)反復(fù)使用,但不可飲用或與人接觸。沖廁所消耗的中水占所有中水的35
76、 % 。如果每個人使用中水沖洗馬桶,大量飲用水可以有效地節(jié)約。建議在一個大的區(qū)域建立大型中級中水系統(tǒng)設(shè)備。每個中水系統(tǒng)的設(shè)備可以從附近的政府建筑物,學校,住宅,酒店,和其他建筑物收集,處理和回收一定數(shù)量的廢水。所得到的水可用于沖洗廁所,清洗車輛,灌溉植物及清洗街道,或為花園使用,并補充河流或湖泊的水。一個小規(guī)模的中水系統(tǒng)從日常使用生活污水的收集廢水,然后,通過適當?shù)乃幚磉^程,改善水質(zhì)到一定程度,最后成為可以重復(fù)使用的非飲用水。有很多的
77、地方使用中水。它可用于衛(wèi)生目的,如公共噴泉,花園的灌溉設(shè)備和清洗街道。相比雨水利用系統(tǒng),為了回收高污染廢水,成本較高,因為需要設(shè)立相關(guān)的水處理設(shè)備,因而處理費用更加昂貴,并且產(chǎn)生較少的經(jīng)濟效益。除了設(shè)置在一定區(qū)域的中水系統(tǒng),如果我們又在這些大型社區(qū)或大型建筑工程建立中水系統(tǒng)的發(fā)展計劃,那就一定能有效地節(jié)約更多的水資源,而且積極的為整個國家改善環(huán)境作出貢獻。</p><p> 4 、回收雨水的評價方法</p
78、><p> 因為水費低和水處理設(shè)備成本高,回收雨水和中水系統(tǒng)還不能產(chǎn)生很好的經(jīng)濟效益。然而,回收雨水系統(tǒng)比重誰更容易實施。在這里引入一種評估回收雨水的方法回收雨水的消耗占消耗水總量的比值。</p><p> 4.1 、計算的基礎(chǔ)上回收雨水</p><p> 設(shè)計一個循環(huán)回收雨水系統(tǒng),首先要確定雨水的數(shù)量和需求,這將決定雨水收集裝置區(qū)和儲罐數(shù)量。雨水的數(shù)量其實由一個
79、簡單的方程式和收集降水裝置區(qū)域決定。不過,降水不能均勻的分布在所有的日子和地點。特別是,降雨通常是集中在某些季節(jié)和地點。因此,臨界點評價是估計和評估氣象降水。氣象紀錄通常包括每年,每月,每日和每小時降水。每年及每月的降水只適合粗略的估計和評估。然而,這種近似結(jié)果帶來的問題是確定該地區(qū)的雨水收集裝置和大量的儲罐。因此,最常見的考慮是每日降水。每小時降水理論上可以支持更準確地評估。然而,由于更多參數(shù)和計算數(shù)據(jù)的增加,使過程復(fù)雜和計算時間長,
80、導(dǎo)致效率低下。在這里,每個建筑物的雨水系統(tǒng)是通過每天的降水來估計。[ 4,7 ] 。</p><p> 4.3、案例研究與分析</p><p> 以下為上述的指導(dǎo)建筑,一所小學采取雨水利用系統(tǒng)的建設(shè)就是采用仿真和驗證評估結(jié)果的例子。在臺北市有一個建筑面積1260平方米和總樓面面積6960平方米的多學科教學樓。大約屋面建筑面積的80 %作為雨水收集面積約為1008平方米。雨水是用來作為中
81、水用在洗手間,每天利用約為20立方米,其流量系數(shù)( y )是0.9 。一組典型的氣象積累作為一個數(shù)據(jù)庫在臺北在1992年獲得通過。在使用仿真以前,雨水蓄洪池作為一個初始條件。在這里,四個儲水罐被認為模擬雨水的利用-——15 , 25 , 50 , 100立方米。結(jié)果表明,增加蓄水池容積,減少流量,可增加雨水利用。一個50立方米的儲罐雨水收集量與可利用的雨水量最接近。因此,這一儲罐取得足夠的容量。當儲罐的容量是100立方米時,使用率幾乎是
82、100 %,溢流量幾乎為零。盡管這一結(jié)果有利于得到利用,但如果容積大可能會占據(jù)很大的空間,從而對建設(shè)規(guī)劃產(chǎn)生不利影響。因此,設(shè)計的原則是必須平衡所有這些因素。例子中樓房有六層,屋頂面積相比總樓面面積很少。每年壁櫥消費的水接近7280立方米,但每年最多收集雨水2136立方米。因此,大量補充自來水是必需的。這一結(jié)果也導(dǎo)致</p><p> 從雨水和自來水利用率來評價雨水儲罐的效率。由于降水量和雨量分布不同因而產(chǎn)生了
83、不同的結(jié)果。圖5和圖6 的結(jié)果說明,,雨水利用率和效率是不同的。從1985年到1994年模擬運行這一個時期,儲罐包括四個不同的容量。當雨水儲罐容量是50立方米時,雨水的使用率超過80 % ,約25 %的來自自來水。使用此方法和評估程序,在建筑設(shè)計才能確定雨水利用系統(tǒng)中雨水儲罐的容積和性能。</p><p> 在公式的水利用指數(shù), C在循環(huán)回收水消費量雨水消費總量比值計算中,一些中水或雨水的回收設(shè)備是一個特殊的比
84、重。因此,這個評估程序, C可以作為近似價值水利用指數(shù)。 </p><p> 5 、綠色建筑的標志和政策</p><p> 在日本所謂的“綠色建筑”是 “與環(huán)境和諧的建筑”, 在歐洲成為“生態(tài)建筑”或“可持續(xù)發(fā)展建筑”,而在北美國家稱為“綠色建筑”。許多時髦的術(shù)語如“綠色消費” , “綠色生活” , “綠色照明”已被廣泛采用。目前在臺灣, “綠色”已被作為環(huán)境保護一種象征。建設(shè)部行政院
85、已決定采取“綠色建筑” 計劃,標志在臺灣生態(tài)和環(huán)境保護好的建筑。</p><p><b> 5.1 、評價原則</b></p><p> 綠色建筑是一個普遍的和有系統(tǒng)的設(shè)計方法的可持續(xù)發(fā)展建筑。這個評價體系是基于以下原則:</p><p> ?。?1 )評價指標應(yīng)準確反映環(huán)保因素,如材料,水,土地和氣候。 ( 2 )評價指標應(yīng)包括規(guī)范的科
86、學的量化評價。</p><p> ?。?3 )評價指標不應(yīng)包括太多的指標,一些類似的質(zhì)量指標應(yīng)結(jié)合起來。</p><p> ?。?4 )評價指標應(yīng)與實際經(jīng)驗一致并且容易讓人理解。( 5 )評價指標不應(yīng)涉及社會科學的評價。</p><p> ?。?6 )評價指標應(yīng)適用于臺灣的熱帶氣候,。</p><p> ( 7 )評價指標應(yīng)適用于評價社區(qū)
87、或聚集的建筑。( 8 )評價指標應(yīng)在預(yù)先設(shè)計階段取得預(yù)期的結(jié)果。</p><p> 根據(jù)這些原則,表4所示七指標體系是臺灣當前綠色建筑評價體系。通過動態(tài)的“地球的資源投入”和“廢物輸出”,從理論上評估建筑物對環(huán)境的影響。實際上,在臺灣定義綠色建筑是“消耗最少地球資源,并創(chuàng)造最少建筑廢料” 。在國際上,每個國家都有不同的方式評價綠色建筑。這個系統(tǒng)提供的基本評價是“低環(huán)境影響” 。更高層次的問題,例如生物多樣性,
88、衛(wèi)生和舒適和社會意識將不會進行評估。這個系統(tǒng)提供了基本的,實用性和可控環(huán)境的保護工具,以便政府緊急制定保護施工環(huán)境的政策。 “綠色建筑”標志設(shè)置是為了獎勵綠色建筑設(shè)計,并鼓勵政府和私營部門要注意綠色建筑的發(fā)展。圖、七是在臺灣綠色建筑的標識[ 6,8 ] 。</p><p> 5.2 、節(jié)約用水措施</p><p> 本文的重點是在綠色建筑評價體系中節(jié)約用水指數(shù)。節(jié)約用水評價制度通過建立
89、設(shè)備設(shè)計來達到節(jié)約水資源的目的。這個評價指標包含了在預(yù)先設(shè)計階段進行標準化的科學量化,以取得預(yù)想的結(jié)果。在研究的基礎(chǔ)上進行評價,在臺灣幾乎是適用的。使用節(jié)水型設(shè)備是最有效的方法節(jié)水;采用兩套節(jié)水型廁所和沒有浴缸的節(jié)水型淋浴設(shè)備特別有效的。各種其他類型的中水和雨水回收再利用的設(shè)備也進行評估。特別是,雨水利用系統(tǒng)在建筑設(shè)計中讓人感到鼓舞。當作為綠色建設(shè)項目的候選工程時,必須介紹循環(huán)用水系統(tǒng)或雨水利用系統(tǒng),申請人應(yīng)向有關(guān)的委員會提出適當?shù)挠嬎?/p>
90、報告,以核實其節(jié)水效率。這一方針,在臺灣實際上似乎是一個為達到綠色建筑目標合理的政策。 一個新的建筑可以輕松地達到上述水利用指數(shù)。這個評價體系,旨在鼓勵人們以節(jié)省更多的水,即使在現(xiàn)有的建筑物中。所有這等于說,政府的大型建設(shè)項目作為一個例子要帶頭在社會使用這種節(jié)水型設(shè)備。</p><p><b> 6 、結(jié)論</b></p><p> 本文介紹了綠色建筑計
91、劃,并提出了節(jié)水指數(shù)并進行規(guī)范化、科學化和量化。這個標準化的科學量化的評價指標可用于預(yù)先設(shè)計階段,以取得預(yù)期的結(jié)果。這項措施的評價指標也是基于臺灣現(xiàn)實的和適用的必要研究。綠色建筑實際的節(jié)水率(WR)應(yīng)< 0.8 ,和AR型節(jié)水型設(shè)備應(yīng)高于0.8 。因此,合格的綠色建筑項目應(yīng)實現(xiàn)節(jié)水率達20 %以上。這個可持續(xù)的政策計劃的主要目標是,不僅在節(jié)約水資源,但也減少在地球上對環(huán)境的影響。 綠色建筑標簽從1999年9月1日開始實施
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土木畢業(yè)設(shè)計外文文獻翻譯--臺灣的綠色建筑節(jié)約用水評價措施
- 節(jié)約用水用電措施
- 市民呼吁采取措施節(jié)約用水
- 節(jié)約用水征文
- 節(jié)約用水條例
- 關(guān)于節(jié)約用水倡議書節(jié)約用水愛護資源
- 節(jié)約用水小常識
- 節(jié)約用水之案例
- 節(jié)約用水反思教案
- 實踐活動節(jié)約用水
- 節(jié)約用水活動方案
- 節(jié)約用水小知識
- 節(jié)約用水反思教案
- 節(jié)約用水的情況說明
- 節(jié)約用水活動方案
- 節(jié)約用水活動總結(jié)
- 城市節(jié)約用水評價及管理研究.pdf
- xx市節(jié)約用水辦法
- 節(jié)約用水主題班會總結(jié)
- 淺談工業(yè)合理用水與節(jié)約用水
評論
0/150
提交評論