版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 優(yōu)化結構設計</b></p><p> W. PRAGER 3</p><p> 摘要。數(shù)學技術被應用在典型的優(yōu)化結構設計問題這一領域。介紹一個關于一個桿的設計為了描述最大化繞度和顯示怎樣適當?shù)碾x散化可能導致一個非線性的問題,在這種情況下的復雜的程序。最優(yōu)布局已經(jīng)被討論了一段時間。一種新的建立最優(yōu)標準的方法已經(jīng)說明了被設計一個靜不定梁
2、或一個變截面的繞度在一個單一的集中壓力下。其他的應用這個方法被簡單的討論,并且用一個多功能的設計的簡單的例子來結束這份文件。</p><p><b> 1 。導言</b></p><p> 結構最優(yōu)化的最普通的問題或許可以表述如下:從所有的滿足某些限制的結構設計,選擇其中一個最低成本的。注意這個聲明并不定義一個唯一的設計;可能同時有幾個最優(yōu)化的設計有相同的成本。&
3、lt;/p><p> 典型的設計將考慮滿足變形或受力的最大約束,或者最小約束的承載能力,屈服載荷,或固有頻率。單一的和多用途的結構都要被考慮,即是受單一因素或多重因素的約束。</p><p> 設計聲明中的花費也許會參照到制造成本或總生產(chǎn)成本和生產(chǎn)中結構的壽命。 在航天結構中,燃油成本需要執(zhí)行最大的重量但最小的質(zhì)量是他們設計的唯一目標,這個觀點將要使用在下面文章。</p>&
4、lt;p> 在這個文獻的第一部分,優(yōu)化設計的典型問題將用已經(jīng)應用這個方面的數(shù)學技術來說明第二部分將要關注有廣泛應用的有很大前途的最近發(fā)展的技術</p><p> 這整個文章,它強調(diào)具有最優(yōu)整體結構是必須被仔細的定義沒有意義的方案是要避免的。</p><p> 事實上還要強調(diào)指出某些直觀的最優(yōu)準則對工程師來說不一定提供真正的最優(yōu)解。為了更清晰的介紹設計原則,大多數(shù)例子是關于單一約
5、束的結構盡管多約束的結構是具有更大的實際意義。</p><p><b> 2 。離散</b></p><p> 去探索具有數(shù)學性質(zhì)的最優(yōu)化結構問題,這是經(jīng)常有用的用一個分立模擬取代連續(xù)問題??紤],例如,簡直彈性梁在圖。 1最大偏轉(zhuǎn)所產(chǎn)生的給予負荷6P不會超過給定值。對于離散性問題,用一系列用彈性鉸鏈連接的剛性棒取代梁。</p><p>
6、圖1.分立模擬彈性梁。</p><p> 在圖1中,緊緊三個鉸鏈已經(jīng)被介紹了。但是,為了得到真實的結果,這個離散取決于鉸鏈的數(shù)目。彎矩可以轉(zhuǎn)換鉸鏈數(shù)目i和角度的關系為 = (1)</p><p> 其中是彈性剛度的鉸鏈。由于是靜定梁, 在鉸鏈上的彎矩獨立的剛度;因此,</p><p> =5Ph=, =3Ph=, =Ph=. (2)</p
7、><p> 接下來,彎曲角度將被視為最小。在一個直角坐標系的實際空間中,i=1,2,3,這個非負性質(zhì)的彎曲角度和在鉸鏈上的繞度定義凸可行域。</p><p><b> ,,0,</b></p><p> 5+3+-6/h0,</p><p> 3+9-3-6/h0, (3)</p>
8、<p> +3+5-6/h0,</p><p> 作為接下來將要講的例子, 一組質(zhì)量的剛度假定達到剛度的一定比例。這個設計即是 ++=Min 或,通過公式(2)</p><p> 5/+3/+1/=Min (4)</p><p> 值得注意的是 通過公式(3)-(4),一個局部優(yōu)化對于整體優(yōu)化必須的。</p>&l
9、t;p> 這句話很重要因為剛剛開始的設計對于滿足所有約束的相鄰設計是沒有什么實際價值的。也要注意到 優(yōu)化總體上 不會對應到位于一個邊的或恰好位于一個頂點區(qū)域的一個點的空間設計。這句話直觀的表明沖突的約束不一定是有用的。假如,舉個例子來說,設計,,條件<<=.假如是剛度的最小變量,設計+,-,,擁有相同的質(zhì)量的理想繞度為,, 滿足<,<<=而且三個剛度降低一定的比例直到第一個鉸鏈的繞度是。假如這個探
10、討是正確的降低結構只來那個的過程能夠被重復直到鉸鏈1和2有相同的質(zhì)量&。接下來設計的更改和都有想同的少量的增加而則降低兩倍目的是保持質(zhì)量常數(shù)。用這種方式,可能有爭論關于;優(yōu)化設計必須對應一個邊上的一個點或者可行性區(qū)域上的頂點,由于優(yōu)化設計,兩三個不平等的約束就必須列方程。這沖突的約束通常會出現(xiàn)在工程界,顯然用手是不能完成的。具有不平等約束繞度的最小重量梁的設計近期已經(jīng)已經(jīng)討論了被Haug and Kirmser(見1)較早前調(diào)查
11、(見,例如,參2-4 )在某一特定點所涉及的不等式約束對撓度,舉例來說,在載荷集中在一個點上。在特殊情況下該點的最大繞度位置是已知的,舉例來說,從對稱的考慮,一個約束擁有最大繞</p><p><b> 3 。布局優(yōu)化</b></p><p> 在前面的示例,類型和布局結構(簡單支持,直梁)被給予并且一些某些地方的參數(shù)(剛度值)是設計師選擇的。一個更有挑戰(zhàn)性的問題
12、就是類型和/或布局也必須選擇最佳的。</p><p> 數(shù)字顯示,由桁架支持的給出點的應力載荷P和Q ,即連接桿組成的結構,布局就是要去盡量減少重量。為了簡化分析,Dorn, Gomory,and Greenberg(見5 )通過劃分網(wǎng)格其橫向間距L和垂直間距的h描述這個問題(圖2 a )優(yōu)化是接下來發(fā)現(xiàn)需要解決的線性規(guī)劃。優(yōu)化布局取決于質(zhì)量的比例h/L和P/Q=0,0.5,和2.0.</p>
13、<p> 圖.2 .優(yōu)化布置的桁架根據(jù)多恩,戈莫里,格林伯格(見5 ) 。</p><p> 因為h/L=1和P/Q是一個給定數(shù),優(yōu)化值是唯一的除開某些臨界值P/Q,其中優(yōu)化布局的變化,舉例來說,從圖2c到踢2d。接下來例子,然而,承認一個無限大的優(yōu)化布局是所有相關的擁有同樣重量的結構重量。</p><p> 三個同樣大小的作用力P,彼此之間成120 °角,已經(jīng)給
14、出的點成等邊三角形(圖3a)。這些連接點連接的構架用最小質(zhì)量設計。當上界約束提供軸向應力在任何桿。數(shù)據(jù)3b和3c是可行的布局。這些力作用在靜定機構的桿上之后從平衡的角度考慮,每個桿件的橫截面都會有一個大小的橫向應力。</p><p> 接下來討論Maxwell的觀點(見6,PP第175-177 )表明兩個設計有相同的質(zhì)量。設想飛機都是用相同的材料組成的,單位平面產(chǎn)生的張力達到e對所有的線性元素。通過虛擬的規(guī)律,
15、這個桿件P上所有的點的位移所產(chǎn)生的虛擬功等價于內(nèi)部虛擬功=F 每個桿件受力為F 力在桿方向的虛擬位移為,如果桿件的橫截面積是A長度是L,則有F=A 和=L則有</p><p> =AL=V (5)</p><p> V是使用的所有材料的體積?,F(xiàn)在得到功取決于載荷和所有點的虛擬位移除開獨立布置</p><p> 圖。 3 。選擇最優(yōu)設計。&l
16、t;/p><p> 的桿件;他等價于兩個機構如果下面=和(5)這兩個構架使用相同數(shù)量的材料。</p><p> 如果兩個構架的橫截面積都減半, 每個新的構架能夠驅(qū)動滿載荷強度P/2并且不違反設計約束.按圖3d的方式疊加桿件另外用相同質(zhì)量的構建按圖3d和3c疊加所有構架加載滿載荷P。</p><p> 圖。 4 。替代解決問題,在圖。第3 a </p&
17、gt;<p> 圖4顯示的另一個解決問題的方法。所有重桿件的中心線是圓弧的。每個桿件的軸向力和他們的軸向應力有關</p><p> 其他輕些的桿件。他們也根據(jù)軸向拉伸應力,除開桿件AO,BO和CO,組成圓錐。正常情況下桿件的邊緣區(qū)域是受力的密集區(qū)域。如果緊緊是有限的數(shù)目被使用就像圖4并且這些邊緣是多變形而不是圓弧 ,這就是重量稍稍重一點點的結果。 首先申明,然而,如果桿件連接件(節(jié)點板和鉚釘或焊
18、接)的質(zhì)量被考慮其中這個就不是有效的。</p><p> 在圖4中的桿件也許可以被有厚度統(tǒng)一材質(zhì)均勻的桿件替代。然而質(zhì)量是取勝之本,設計也是這樣的,然而,設計構架的時候遇到的狹隘的問題要被排除。在這種情況下,被排除的設計將不會比其他的設計的質(zhì)量更輕。然而,除開這一類對一個最優(yōu)的進行有足夠廣度定義的,或許緊緊對一系列降低質(zhì)量的設計進行融合一個最優(yōu)的這不是考慮的范圍之內(nèi)</p><p>
19、圖。 5 。優(yōu)化結構轉(zhuǎn)遞周邊荷載至中環(huán)環(huán)的桁架而非磁盤狀 圖5對這句話進行了說明。 在周邊的離散的徑向載荷等價于中央形成一個環(huán)狀的小質(zhì)量的構件。</p><p> 如果這個聲明的結構將要被表達磁場形狀的連續(xù)變厚度所取代,優(yōu)化后的結構如圖5要為排除。注意清楚看看圖5他所顯示的緊緊是質(zhì)量大的成員。</p><p> 這些之間,質(zhì)量輕些的成員之間關系是稠密的,他們之間是以螺線形狀相交
20、的。</p><p> 這個問題在圖3中已經(jīng)有一個解決方案,每個構件都緊緊是包含受力的桿件。圖6說明了一個問題既要使用沒有受力的也要使用受力的并且只有唯一解。上方的數(shù)據(jù)是橫向載荷P會產(chǎn)生彎曲,底部的剛性結構可以看為是無限小的質(zhì)量,在桿件上的應力應該在-和之內(nèi)。</p><p> 這個最優(yōu)的構架邊緣桿件的質(zhì)量較大;質(zhì)量大的構件中間的構件的質(zhì)量較輕,由圖6表達。注意在位移密集的桿件連接處定
21、義一個位移區(qū)域他的的基點固定。</p><p> 一個移動的受力區(qū)域都擁有這一規(guī)律即 =/ E和=-/E 其中E是彈性模量。事實上,如果u和v是位移分量類似于直角坐標系中的x和y,那么+就是個常量有以下的關系即</p><p> +=0, (6)</p><p> 其中x和y顯示著不同的坐標關系。類
22、似的,事實上最大的主應變e1擁有連續(xù)的線性關系</p><p> 4*-(+)( +)=-4 (7)</p><p> 從公式(6)中可以看出,其中存在函數(shù)如下</p><p> =,=- (8)</p><p> 把 公式(8)代入公式(7)中則
23、有</p><p> 4 +=4 (9)</p><p> 沿著根部弧有,==0,則可以推到出</p><p> =0, =0 (10)</p><p> 其中是沿著根部弧的微變量。</p><p> 微分方程(9)是一個雙曲
24、線,其特點主應變是線性變化的??挛鳁l件在公式(10)中元素在根部是是獨特的,并且和公式(8)位移也有關系 </p><p> 圖。 6 。在傳輸載荷P下彎曲和剛性壁的獨特的優(yōu)化結構</p><p> 這些位移現(xiàn)在將使用作為真正位移在虛功原理在一個任意的結構上其載荷P傳達到基座?。▓D6)并且每個連桿都在一個軸向應力為@o之下使用Maxwell公式則有
25、,可以得到== 其中||=A并且||因為每個單位的拉伸或者壓縮量超過/E就不是線性變化了,</p><p> =∑|F||| (/E)V, (11)</p><p> 其中V是所有材料的總體積。</p><p> 接下來,設想第二中結構它是由有規(guī)律線性應變的的連桿組成并且他要考慮到虛擬的移動區(qū)域和底部相應的應變 涉及到結構的質(zhì)量將要用星號
26、標記。就像前面所講的那樣運用虛擬原理,最有=,但是*=并且=</p><p> 則有 == (12)</p><p> 則可以看出=,比較表達式(11)和(12)則可以看出第二種方案的結構使用的材料要比第一種方案少。剛剛介紹的觀點來自于Michell(見7),然而,是一個純粹的靜態(tài)的邊界條件,因此不能達到一個獨特的優(yōu)化結構。對一個獨特的優(yōu)化涉及來說最重要的
27、是運用運動學邊界條件已經(jīng)被作者指出(見8)</p><p> 圖。 7 。幾何布局優(yōu)化。</p><p> 圖7 說明了一個重要的具有幾何性質(zhì)的在有規(guī)律的應變和無規(guī)律的應變組成的區(qū)域種的正交曲線應變 讓由ABC和DEF組成的兩個固定曲線。角度是由一個曲線上的切線和另外一個曲線上點的切線相交的夾角。在平移的理論下,正交的曲線他的幾何性質(zhì)可以表明他最大的剪應力(滑移線)的方向在這個背景下
28、,它們通常后來被Hencky (見. 9) and Prandtl (見. 10)命名;它們的結果已經(jīng)被廣泛的應用(見,例如,見。11-13)</p><p> 圖。 8 。優(yōu)化布置時,可用空間范圍內(nèi)垂直通過A和B 。</p><p> 圖8顯示了最優(yōu)空間的布局即可用的結構空間是垂直連線A和B之間的范圍 。因為這個固定支座弧是一個直線部分,在三角形ABC中間沒有連桿。再次顯示,他的邊緣
29、的桿件的質(zhì)量重,其他的連桿緊緊一些并且質(zhì)量輕。這些桿件不布局有些類似于人類的骨架的結構(see, for instance,ReL 14, p. 12, Fig. 6)。Michell結構給出了更深一步的理解,參照。15-16.</p><p> 4 。新方法,建立優(yōu)化準則</p><p> 圖。 9 。梁展不斷截面。</p><p> 在圖9中的梁是建立在A
30、上面的并且B和C只是給予了簡單的支撐。</p><p> 承受載荷P的這一點的繞度的值是。這個梁有一個核心部分他的寬度是B并且它的高度是H。這個梁他的寬度是B并且它們連續(xù)的厚度滿足《H和《H在和上這樣的目的是盡量減少這個結構梁的質(zhì)量由于他的核心面的尺寸已經(jīng)被定義了,盡量減少這個梁的質(zhì)量也就意味著要盡量減少制約質(zhì)量的尺寸。</p><p> 此外,由于厚度為橫截面積的抗彎曲彈性剛度,其中
31、i=1,2,有,其中E是楊氏模量,</p><p><b> (13)</b></p><p> 這個可能被視為盡量減少質(zhì)量的方程。</p><p> 使得是從桿件上典型橫截面到桿件最左邊的距離,并且在這個橫截面上的曲率和彎矩分別是和則的表達式可以寫為如下</p><p> ==
32、(14)</p><p> 就是在Li進行微積分。</p><p> 在此框架內(nèi)的問題,設計一個梁就是確定的值,i=1,2.假如和都滿足設計的約束(給出只),并且和假設載荷下給出的曲率,根據(jù)(14)公式</p><p> = (15)</p><p> 此外,曲率是約束變動的(即滿足繞度的)根據(jù),根據(jù)最小勢能原理根
33、據(jù)即</p><p><b> (16)</b></p><p> 約去兩邊的在式子(16)中在根據(jù)式子(15)可得</p><p><b> ?。?7)</b></p><p> 這里 (18)</p><p>
34、則就是每個單位平方米的曲率在上。假如</p><p><b> (19)</b></p><p> 從公式(17)和(13)得到其滿足這設計另外設計的約束不能比剛剛滿足約束的設計更重。因此條件(19)是最優(yōu)的,這個條件也是下面所要講到的。</p><p> 應用這個定義則有 (20)</p><p
35、> 設計的條件不應該比設計條件是的質(zhì)量更重由下面公式得到</p><p><b> ?。?1)</b></p><p> 換個方面說,不等式(17)從最小勢能原則得到</p><p><b> (22)</b></p><p> , 和,將作為和的載體像坐標系。</p>
36、<p> 這個不等式(21)中不能位于第二和第四象限,并且這個不等式要求和是個非負的。</p><p> 現(xiàn)在,優(yōu)化設計和他的平均曲率都是未知的但是是唯一的。換個方面來講,是受的值所限,因此當?shù)姆较虮贿x擇時其等級也所確定。此外,在這個最優(yōu)化設計中的,他的結構質(zhì)量將最接近最小質(zhì)量。接近于邊緣空間的相應的一半將被不等式(21)確定。假如和的坐標是非負的,那么和的坐標必須位于正常的一半空間內(nèi),因此,(19
37、)是最優(yōu)化的必要條件,這是根據(jù)Sheu and Prager (見. 17).</p><p><b> 5。多用途的設計</b></p><p> 圖。 11 。多用途的設計。</p><p> 圖11說明了一個多用途的設計的問題。在第一個原因下,張度為L下的伸長率不會超過值。在第二個條件下,在中央給定的載荷T下的繞度不會超過給定的值;
38、并且,</p><p> 在第三個條件下,他的屈曲載荷至少是B。注意設計的約束是個不等式的形式,以為最優(yōu)設計或許是一個或是兩個。</p><p> 下面的掃個因素是相互制約的。正如第四部分,取得下面的不等式</p><p> ,, (23)</p><p> 其中是縱向位移在這個模型中
39、,且 和是梁和柱上的繞度。由公式(23)可以得到</p><p> , , (24) </p><p> 其中是常數(shù)。很容易看到這些最優(yōu)條件是不兼容的。因為負荷L上的縱向應變U……被認為是第一最優(yōu)條件,但是負載T下的曲率將不滿足第二最優(yōu)條件。 因此不等式(23)不能左右相加,他們乘積得</
40、p><p><b> ?。?5) </b></p><p><b> 這個不等式表明</b></p><p> =Const (26)</p><p> 是一個充分條件。這個條件也是必要的。 他可以變成另外一個形式</p>&
41、lt;p> (27) </p><p> 其中 ,和是面應力是分別在配合,梁和柱上。其他的例子和理論,參見。32-33</p><p><b> 6。結束語</b></p><p> 總的概括而言,應該強調(diào)指出設最典型的計約束主要討論在第四部分,不是只是緊緊只說建立最優(yōu)準則的方法。事實上,最優(yōu)化準則在繼續(xù)發(fā)展。舉例
42、來說,標準( 31 ) 優(yōu)化設計給出了動態(tài)偏轉(zhuǎn)已第一次出現(xiàn)在文件上,這里沒有已經(jīng)被解決的例子4。在優(yōu)化設計中給出了剛度參見35.同樣,這里已經(jīng)簡單的討論了限制性的優(yōu)化梁的設計,但是但不是必需的。</p><p> JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 6, No. I. 1970</p><p> SURVEY PA
43、PER</p><p> Optimization of Structural Design I.~</p><p> W. PRAGER 3</p><p> Abstract. Typical problems of optimal structural design are discussed to indicate mathematical techn
44、iques used in this field. An introductory example(Section 2) concerns the design of a beam for prescribed maximal deflection and shows how suitable discretization may lead to a problem of nonlinear programming, in this c
45、ase, convex programming. The problem of optimal layout of a truss (Section 3) is discussed at some length. A new method of establishing optimality criteria (Section 4) is illustrat</p><p> 1. Introduction&l
46、t;/p><p> The most general problem of structural optimization may be stated as follows: from all structural designs that satisfy certain constraints, select one of minimal cost. Note that this statement does n
47、ot necessarily define a unique design; there may be several optimal designs of the same minimal cost.</p><p> Typical design constraints that will be considered in the following specify upper bounds for def
48、ormations or stresses, or lower bounds for load-carrying capacity, buckling load, or fundamental natural frequency. Both singlepurpose and multipurpose structures will be considered, that is, structures that are respecti
49、vely subject to a single design constraint or a multiplicity of constraints.</p><p> The term cost in the statement of the design objective may refer to the manufacturing cost or to the total cost of manufa
50、cture and operation over the expected lifetime of the structure. In aerospace structures, the cost of the fuel needed to carry a greater weight frequently overshadows the cost of manufacture to such an extent that minima
51、l weight becomes the sole design objective. This point of view will be adopted in the following.</p><p> In the first part of this paper, typical problems of optimal design will be discussed to illustrate m
52、athematical techniques that have been used in this field. The second part will be concerned with a promising technique of wide applicability that has been developed recently. Throughout the paper, it will be emphasized t
53、hat the class of structures within which an optimum is sought must be carefully defined if meaningless solutions are to be avoided. The fact will also be stressed that certain int</p><p> 2. Discretization&
54、lt;/p><p> To explore the mathematical character of a problem of structural optimization, it is frequently useful to replace the continuous structure by a discrete analog. Consider, for instance, the simply-su
55、pported elastic beam in Fig. 1. The maximum deflection produced by the given load 6P is not to exceed a given value To discretize the problem, replace the beam by a sequence of rigid rods that are connected by elastic h
56、inges. In Fig. 1, only</p><p> Fig. 1. Discrete analog of elastic beam.</p><p> three hinges have been introduced; but, to furnish realistic results, the discretization would have to use a muc
57、h greater number of hinges. The bending moment transmitted across the ith hinge is supposed to be related to the angle of flexure by</p><p><b> = (1) </b></p><p> where is the e
58、lastic stiffness of the hinge. Since the beam is statically determinate, the bending moments at the hinges are independent of the stiffnesses ; thus,</p><p> =5Ph=, =3Ph=, =Ph=. (2)</p><
59、p> In the following, the angles of flexure , will be treated as small. In a design space with the rectangular Cartesian coordinates, i = 1, 2, 3, the nonnegative character of the angles of flexure and the constraints
60、 on the deflections at the hinges define the convex feasible domain</p><p><b> ,,0,</b></p><p> 5+3+-6/h0,</p><p> 3+9-3-6/h0, (3)</p><p> +3+
61、5-6/h0,</p><p> As will be shown in connection with a later example, the cost (in terms of weight) of providing a certain stiffness may be assumed to be proportional to this stiffness. The design objective
62、thus is ++=Min or, by (2),</p><p> 5/+3/+1/=Min (4)</p><p> Note that, for the convex program (3)-(4), a local optimum is necessarily a global optimum. This remark is important becau
63、se a design that can only be stated to be lighter than all neighboring designs satisfying the constraints is of little practical interest. Note also that the optimum will not, in general, correspond to a point of design
64、space that lies on an edge or coincides with a vertex of the feasible domain. This remark shows that the intuitively appealing concept of competing constraint</p><p> Minimum-weight design of beams with ine
65、quality constraints on deflection has recently been discussed by Haug and Kirmser (Ref. 1). Earlier investigations (see, for instance, Refs. 2-4) involved inequality constraints on the deflection at a specific point, for
66、 instance, at the point of application of a concentrated load. In special cases, where the location of the point of maximum deflection is known a priori, for instance, from symmetry considerations, a constraint on the ma
67、ximum deflection can </p><p> 3. Optimal</p><p> In the preceding example, the type and layout of the structure (simply supported, straight beam) were given and only certain local parameters (
68、stiffness values) were at the choice of the designer. A much more challenging problem arises when type and/or layout must also be chosen optimally.</p><p> Figure 2a shows the given points of application of
69、 loads P and Q that are to be transmitted to the indicated supports by a truss, that is, a structure consisting of pin-connected bars, the layout of which is to be determined to minimize the structural weight. To simplif
70、y the analysis, Dorn, Gomory, and Greenberg (Ref. 5) discretized the problem by restricting the admissible locations of the joints of the truss to the points of a rectangular grid with horizontal spacing l and vertical s
71、pacing h (</p><p> Fig. 2. Optimal layout of truss according to Dorn, Gomory, and Greenberg (Ref. 5).</p><p> on the values of the ratios h/l and P/Q. Figures 2b through 2d show optimal layout
72、s for h/l = 1 and P/Q = O, 0.5, and 2.0.</p><p> For h/l = 1 and a given value of P/Q, the optimal layout is unique except for certain critical values of P/Q, at which the optimal layout changes, for instan
73、ce, from the form in Fig. 2c to that in Fig. 2d. The next example, however, admits an infinity of optimal layouts that are all associated with the same structural weight.</p><p> Three forces of the same in
74、tensity P, with concurrent lines of action that form angles of 120 ° with each other, have given points of application that form an equilateral triangle (Fig. 3@ A truss that connects these points is to be designed
75、for minimal weight, when an upper bound is prescribed for the magnitude of the axial stress in any bar.</p><p> Figures 3b and 3c show feasible layouts. After the forces in the bars of these statically det
76、erminate trusses have been found from equilibrium considerations, the cross-sectional areas are determined to furnish an axial stress of magnitude in each bar. </p><p> The following argument, which is due
77、 to Maxwell (Ref. 6, pp. 175-177), shows that the two designs have the same weight.</p><p> Imagine that the planes of the trusses are subjected to the same virtual, uniform, planar dilatation that produces
78、 the constant unit extension e for all line elements. By the principle of virtual work, the virtual external work of the loads P on the virtual displacements of their points of application</p><p> Fig. 3. A
79、lternative optimal designs.</p><p> equals the virtual internal work =Fof the bar forces F on the virtual elongations ~ of the bars. If cross-sectional area and length of the typical bar are denoted by A an
80、d L, then F=A and =L. Thus,</p><p> =AL=V (5)</p><p> where V is the total volume of material used for the bars of the truss. Now, depends only on the loads and the virtual displaceme
81、nts of their points of application but is independent of the layout of the bars; therefore, it has the same value for both trusses. If follows from=and (5) that the two trusses use the same amount of material.</p>
82、<p> If all cross-sectional areas of the two trusses are halved, each of the new trusses will be able to carry loads of the common intensity P/2 without violating the design constraint. Superposition of these trus
83、ses in the manner shown in Fig. 3d then results in an alternative truss for the full load intensity P that has the same weight as the trusses in Figs. 3b and 3c.</p><p> Fig. 4. Alternative solution to prob
84、lem in Fig. 3a.</p><p> Figure 4 shows another solution to the problem. The center lines of the heavy edge members are circular arcs. The axial force in each of these members has constant magnitude correspo
85、nding to the tensile axial stress . The other bars are comparatively light. They are also under the tensile axial stress and are prismatic, except for the bars AO, BO, and CO, which are tapered.</p><p> Th
86、e bars that are normal to the curved edge members must be densely packed. If only a finite number is used, as in Fig. 4, and the edge members are made polygonal rather than circular, a slightly higher weight results. Thi
87、s statement, however, ceases to be valid when the weight of the connections between bars (gusset plates and rivets or welds) is taken into account.</p><p> The interior bars in Fig. 4 may also be replaced b
88、y a web of uniform thickness under balanced biaxiat tension. While fully competitive as to weight, this design has, however, been excluded by the unnecessarily narrow formulation of the problem, which called for the desi
89、gn of a truss. In this case, the excluded design does not happen to be lighter than the others. However, unless the class of structures within which an optimum is sought is defined with sufficient breadth, it may only fu
90、rnish a se</p><p> Figure 5 illustrates this remark. The discrete radial loads at the periphery are to be transmitted to the central ring by a structure of minimal weight.</p><p> If the word
91、structure in this statement were to be replaced by the expression</p><p> Fig. 5. Optimal structure for transmitting peripheral loads to central ring is truss rather than disk</p><p> disk of
92、continuously varying thickness, the optimal structure of Fig. 5 would be excluded. Note that Fig. 5 shows only the heavy members. Between these, there are densely packed light members along the logarithmic spirals that i
93、ntersect the radii at </p><p> The problem indicated in Fig. 3a has an infinity of solutions, each of which contains only tension members. Figure 6 illustrates a problem that requires the use of compression
94、 as well as tension members and has a unique solution. The horizontal load P at the top of the figure is to be transmitted to the curved, rigid foundation at the bottom by a trusslike structure of</p><p> F
95、ig. 6. Unique optimal structure for transmission of load P to curved, rigid wall.</p><p> minimal weight, the stresses in the bars of which are to be bounded by- and . The optimal truss has heavy edge membe
96、rs; the space between them</p><p> is filled with densely packed, light members, only a few of which are shownin Fig. 6. Note that the displacements of the densely packed joints of thestructure define a dis
97、placement field that leaves the points of the foundation fixed. A displacement field satisfying this condition wilt be called kinematically admissible.</p><p> There is a kinematically admissible displaceme
98、nt field that everywhere has the principal strains =/ E and =-/E, where E is Young's modulus. Indeed, if u and v are the (infinitesimal) displacement components with respect to rectangular axes x and y, the fact that
99、 the invariant + vanishes furnishes the relation</p><p> +=0, (6)where the subscripts x and y indicate differentiation with respect to the coordinates. Similarly, the fact that the maximum principal strain
100、 has the constant value e1 yields the relation</p><p> 4*-(+)( +)=-4 (7)In view of (6), there exists a function such that</p><p> =,=- (8)Substituti
101、on of (8) into (7) finally furnishes</p><p> 4 +=4 (9)Along the foundation are, u = v = O, which is equivalent to</p><p> =0, =0 (10)where is the der
102、ivative of T along the normal to the foundation are.</p><p> The partial differential equation (9) is hyperbolic, and its characteristics are the lines of principal strain. The Cauchy conditions (10) on the
103、 foundation arc uniquely determine the function , and hence the displacements (8), in a neighborhood of this arc.</p><p> These displacements will now be used as virtual displacements in the application of
104、the principle of virtual work to an arbitrary trusslike structure that transmits the load P to the foundation are (Fig. 6) and in which each bar is under an axial stress of magnitude %. With the notations used above in t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 優(yōu)化結構設計【中英文word】【中文5500字】機械類外文翻譯
- 優(yōu)化結構設計【中英文word】【中文5500字】機械類外文翻譯
- 機械類外文翻譯【fy156】優(yōu)化結構設計【中英文word】【中文5500字】
- 機械類外文翻譯【fy156】優(yōu)化結構設計【中英文word】【中文5500字】
- 全承載客車車身優(yōu)化結構設計分析
- 外文翻譯--結構設計原理
- 框架結構設計外文翻譯
- 外文翻譯--鋼筋混凝土結構設計
- 外文翻譯---高層建筑及結構設計
- 外文翻譯--汽車驅(qū)動橋結構設計.doc
- 外文翻譯--汽車驅(qū)動橋結構設計.doc
- [雙語翻譯]機床設計外文翻譯--重型機床結構設計方法
- 淺析房屋結構設計中結構設計優(yōu)化技術
- [雙語翻譯]機床設計外文翻譯--重型機床結構設計方法(英文)
- 畢業(yè)設計---橋梁臨時結構設計(含外文翻譯)
- 畢業(yè)設計外文翻譯--鋼結構設計規(guī)范
- 房屋結構設計中的建筑結構設計優(yōu)化
- 結構設計優(yōu)化技術在廠房結構設計中的應用
- 2016年機床設計外文翻譯--重型機床結構設計方法
- 淺談結構設計優(yōu)化在房屋結構設計中的應用
評論
0/150
提交評論