版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄 英文翻譯</b></p><p> Spin control for cars.</p><p> Stability control systems are the latest in a string of technologies focusing on improved diriving safety. Such sy
2、stems detect the initial phases of a skid and restore directional control in 40 milliseconds, seven times faster tthan the reaction time of the average human. They correct vehicle paths by adjusting engine torque or appl
3、ying the left- or-right-side brakes, or both, as needed. The technology has already been applied to the Mercedes-Benz S600 coupe.</p><p> Full Text:COPYRIGHT 1995 American Society of Mechanical Engineers &l
4、t;/p><p> Automatic stability systems can detect the onset of a skid and bring a fishtailing vehicle back on course even before its driver can react. </p><p> Safety glass, seat belts, crumple zo
5、nes, air bags, antilock brakes, traction control, and now stability control. The continuing progression of safety systems for cars has yielded yet another device designed to keep occupants from injury. Stability control
6、systems help drivers recover from uncontrolled skids in curves, thus avoiding spinouts and accidents. </p><p> Using computers and an array of sensors, a stability control system detects the onset of a skid
7、 and restores directional control more quickly than a human driver can. Every microsecond, the system takes a "snapshot," calculating whether a car is going exactly in the direction it is being steered. If ther
8、e is the slightest difference between where the driver is steering and where the vehicle is going, the system corrects its path in a split-second by adjusting engine torque and/or applying the ca</p><p> A
9、stability control system senses the driver's desired motion from the steering angle, the accelerator pedal position, and the brake pressure while determining the vehicle's actual motion from the yaw rate (vehicle
10、 rotation about its vertical axis) and lateral acceleration, explained Anton van Zanten, project leader of the Robert Bosch engineering team. Van Zanten's group and a team of engineers from Mercedes-Benz, led by proj
11、ect manager Armin Muller, developed the first fully effective stabilit</p><p> Automotive safety experts believe that stability control systems will reduce the number of accidents, or at least the severity
12、of damage. Safety statistics say that most of the deadly accidents in which a single car spins out (accounting for four percent of all deadly collisions) could be avoided using the new technology. The additional cost of
13、the new systems are on the order of the increasingly popular antilock brake/traction control units now available for cars. </p><p> The debut of stability control technology took place in Europe on the Merc
14、edes-Benz S600 coupe this spring. Developed jointly during the past few years by Robert Bosch GmbH and Mercedes-Benz AG, both of Stuttgart, Germany, Vehicle Dynamics Control (VDC). in Bosch terminology, or the Electronic
15、 Stability Program (ESP), as Mercedes calls it, maintains vehicle stability in most driving situations. Bosch developed the system, and Mercedes-Benz integrated it into the vehicle. Mercedes engineers used </p>&l
16、t;p> Stability control systems will first appear in mid-1995 on some European S-Class models and will reach the U.S. market during the 1996 model year (November 1995 introduction). It will be available as a $750 opti
17、on on Mercedes models with V8 engines, and the following year it will be a $2400 option on six-cylinder cars. About $1650 of the latter price is for the traction control system, a prerequisite for stability control. <
18、/p><p> Bosch is not alone in developing such a safety system. ITT Automotive of Auburn Hills, Mich., introduced its Automotive Stability Management System (ASMS) in January at the 1995 North American Internat
19、ional Auto Show in Detroit. "ASMS is a quantum leap in the evolution of antilock brake systems, combining the best attributes of ABS and traction control into a total vehicle dynamics management system," said T
20、imothy D. Leuliette, ITT Automotive's president and chief executive officer. </p><p> "ASMS monitors what the vehicle controls indicate should be happening, compares that to what is actually happen
21、ing, then works to compensate for the difference," said Johannes Graber, ASMS program manager at ITT Automotive Europe. ITT's system should begin appearing on vehicles worldwide near the end of the decade, accor
22、ding to Tom Mathues, director of engineering of Brake & Chassis Systems at ITT Automotive North America. Company engineers are now adapting the system to specific car models from</p><p> A less-sophisti
23、cated and less-effective Bosch stability control system already appears on the 1995 750iL and 850Ci V-12 models from Munich-based BMW AG. The BMW Dynamic Stability Control (DSC) system uses the same wheel-speed sensors a
24、s traction control and standard anti-lock brake (ABS) systems to recognize conditions that can destabilize a vehicle in curves and corners. To detect such potentially dangerous cornering situations, DSC measures differen
25、ces in rotational speed between the two front</p><p> The new Bosch and ITT Automotive stability control systems benefit from advanced technology developed for the aerospace industry. Just as in a supersoni
26、c fighter, the automotive stability control units use a sensor-based computer system to mediate between the human controller and the environment - in this case, the interface between tire and road. In addition, the syste
27、m is built around a gyroscopelike sensor design used for missile guidance. </p><p> BEYOND ABS AND TRACTION CONTROL </p><p> Stability control is the logical extension of ABS and traction cont
28、rol, according to a Society of Automotive Engineers paper written by van Zanten and Bosch colleagues Rainer Erhardt and Georg Pfaff. Whereas ABS intervenes when wheel lock is imminent during braking, and traction control
29、 prevents wheel slippage when accelerating, stability control operates independently of the driver's actions even when the car is free-rolling. Depending on the particular driving situation, the system may activat<
30、;/p><p> The idea behind the three active safety systems is the same: One wheel locking or slipping significantly decreases directional stability or makes steering a vehicle more difficult. If a car must brake
31、 on a low-friction surface, locking its wheels should be avoided to maintain stability and steerability. </p><p> Whereas ABS and traction control prevent undesired longitudinal slip, stability control redu
32、ces loss of lateral stability. If the lateral forces of a moving vehicle are no longer adequate at one or more wheels, the vehicle may lose stability, particularly in curves. What the driver senses as "fishtailing&q
33、uot; is primarily a turning or spinning around the vehicle's axis. A separate sensor must recognize this spinning, because unlike ABS and traction control, a car's lateral movement cannot be calcula</p>&l
34、t;p> SPIN HANDLERS </p><p> The new systems measure any tendency toward understeer (when a car responds slowly to steering changes), or over-steer (when the rear wheels try to swing around). If a car un
35、dersteers and swerves off course when driven in a curve, the stability control system will correct the error by braking the inner (with respect to the curve) rear wheel. This enables the driver, as in the case of ABS, to
36、 approach the locking limit of the road-tire interface without losing control of the vehicle. The stabilit</p><p> The influence of side slip angle on maneuverability, the Bosch researchers explained, shows
37、 that the sensitivity of the yaw moment on the vehicle, with respect to changes in the steering angle, decreases rapidly as the slip angle of the vehicle increases. Once the slip angle grows beyond a certain limit, the d
38、river has a much harder time recovering by steering. On dry surfaces, maneuverability is lost at slip-angle values larger than approximately 10 degrees, and on packed snow at approximately </p><p> Most dri
39、vers have little experience recovering from skids. They aren't aware of the coefficient of friction between the tires and the road and have no idea of their vehicle's lateral stability margin. When the limit of a
40、dhesion is reached, the driver is usually caught by surprise and very often reacts in the wrong way, steering too much. Oversteering, ITT's Graber explained, causes the car to fishtail, throwing the vehicle even furt
41、her out of control. ASMS sensors, he said, can quickly detect th</p><p> It is important that stability control systems be user-friendly at the limit of adhesion - that is, to act predictably in a way simil
42、ar to normal driving. </p><p> The biggest advantage of stability control is its speed - it can respond immediately not only to skids but also to shifting vehicle conditions (such as changes in weight or ti
43、re wear) and road quality. Thus, the systems achieve optimum driving stability by changing the lateral stabilizing forces. </p><p> For a stability control system to recognize the difference between what th
44、e driver wants (desired course) and the actual movement of the vehicle (actual course), current cars require an efficient set of sensors and a greater computer capacity for processing information. </p><p>
45、The Bosch VDC/ESP electronic control unit contains a conventional circuit board with two partly redundant microcontrollers using 48 kilobytes of ROM each. The 48-kB memory capacity is representative of the large amount o
46、f "intelligence" required to perform the design task, van Zanten said. ABS alone, he wrote in the SAE paper, would require one-quarter of this capacity, while ABS and traction control together require only one
47、half of this software capacity. </p><p> In addition to ABS and traction control systems and related sensors, VDC/ESP uses sensors for yaw rate, lateral acceleration, steering angle, and braking pressure as
48、 well as information on whether the car is accelerating, freely rolling, or braking. It obtains the necessary information on the current load condition of the engine from the engine controller. The steering-wheel angle s
49、ensor is based on a set of LED and photodiodes mounted in the steering wheel. A silicon-micromachine pressure senso</p><p> Determining the actual course of the vehicle is a more complicated task. Wheel spe
50、ed signals, which are provided for antilock brakes/traction control by inductive wheel speed sensors, are required to derive longitudinal slip. For an exact analysis of possible movement, however, variables describing la
51、teral motion are needed, so the system must be expanded with two additional sensors - yaw rate sensors and lateral acceleration sensors. </p><p> A lateral accelerometer monitors the forces occurring in cur
52、ves. This analog sensor operates according to a damped spring-mass mechanism, by which a linear Hall generator transforms the spring displacement into an electrical signal. The sensor must be very sensitive, with an oper
53、ating range of plus or minus 1.4 g. </p><p> YAW RATE GYRO </p><p> At the heart of the latest stability control system type is the yaw rate sensor, which is similar in function to a gyroscope
54、. The sensor measures the speed at which the car rotates about its vertical axis. This measuring principle originated in the aviation industry and was further developed by Bosch for large-scale vehicle production. The ex
55、isting gyro market offers two widely different categories of devices: $6000 units for aerospace and navigation systems (supplied by firms such as GEC Marcon</p><p> The yaw rate sensor has a complex interna
56、l structure centered around a small hollow steel cylinder that serves as the measuring element. The thin wall of the cylinder is excited with piezoelectric elements that vibrate at a frequency of 15 kilohertz. Four pairs
57、 of these piezo elements are arranged on the circumference of the cylinder, with paired elements positioned opposite each other. One of these pairs brings the open cylinder into resonance vibration by applying a sinusoid
58、al voltage at its n</p><p> Stability controls can be disabled in situations in which some wheel slip and even lateral slip is beneficial, such as when a car is fitted with snow chains or is traversing loos
59、e gravel. </p><p> Several drivers who have had hands-on experience with the new systems in slippery cornering conditions speak of their cars being suddenly nudged back onto the right track just before it s
60、eems that their back ends might break away. </p><p> Some observers warn that stability controls might lure some drivers into overconfidence in low-friction driving situations, though they are in the minori
61、ty. It may, however, be necessary to instruct drivers as to how to use the new capability properly. Recall that drivers had to learn not to "pump" antilock brake systems. </p><p> Although little
62、detail has been reported regarding next-generation active safety systems for future cars (beyond various types of costly radar proximity scanners and other similar systems), it is clear that accident-avoidance is the the
63、me for automotive safety engineers. "The most survivable accident is the one that never happens," said ITT's Graber. "Stability control technology dovetails nicely with the tremendous strides that have
64、 been made to the physical structure and overall capabilities o</p><p><b> 汽車(chē)的轉(zhuǎn)向控制</b></p><p> 控制系統(tǒng)穩(wěn)定性是針對(duì)提高駕駛安全性提出的一系列措施中最新的一個(gè)。這個(gè)系統(tǒng)能夠在40毫秒內(nèi)實(shí)現(xiàn)從制動(dòng)開(kāi)始到制動(dòng)恢復(fù)的過(guò)程,這個(gè)時(shí)間是人的反應(yīng)時(shí)間得七倍。他們通過(guò)調(diào)整汽車(chē)扭
65、矩或者通過(guò)應(yīng)用左側(cè)或右側(cè)制動(dòng),如果需要甚至兩者兼用,來(lái)實(shí)現(xiàn)準(zhǔn)確的行車(chē)路線。這個(gè)系統(tǒng)已被應(yīng)用于奔馳S600汽車(chē)了。</p><p> 穩(wěn)定的機(jī)械自動(dòng)系統(tǒng)能夠在制動(dòng)時(shí)發(fā)現(xiàn)肇端,并且在駕駛?cè)藛T發(fā)現(xiàn)能夠反應(yīng)以前實(shí)現(xiàn)車(chē)輛的減速。</p><p> 安全表、安全帶、撞擊緩沖區(qū) 、安全氣囊、ABS防抱死系統(tǒng)、動(dòng)力控制、還有現(xiàn)在的穩(wěn)定調(diào)節(jié)系統(tǒng)。汽車(chē)安全系統(tǒng)的連續(xù)升級(jí),已經(jīng)產(chǎn)生了一種為保護(hù)汽車(chē)所有者安全
66、的設(shè)計(jì)模式。穩(wěn)定調(diào)節(jié)系統(tǒng)幫助駕駛員從不可控制的曲線制動(dòng)中解脫出來(lái),從而避免了汽車(chē)的回形滑行和交通事故。</p><p> 利用計(jì)算機(jī)和一系列傳感器,穩(wěn)定調(diào)節(jié)系統(tǒng)能夠檢測(cè)到制動(dòng)的肇端并且比人更快的恢復(fù)對(duì)汽車(chē)的方向控制。系統(tǒng)每百萬(wàn)分之一秒作出一次快照捕捉,以及斷汽車(chē)是否在按照駕駛路線行駛。如果檢測(cè)到汽車(chē)行駛路線和駕駛員駕駛路線存在一個(gè)微小的偏差 ,系統(tǒng)會(huì)在瞬間糾正發(fā)動(dòng)機(jī)扭矩或者應(yīng)用汽車(chē)左右制動(dòng)。標(biāo)準(zhǔn)反應(yīng)時(shí)間是40毫
67、秒----人的平均反應(yīng)時(shí)間的七分之一。</p><p> 羅伯特博施工程系統(tǒng)負(fù)責(zé)人安東·范·桑特解釋說(shuō):“一個(gè)穩(wěn)定的控制系統(tǒng)能夠“感覺(jué)到”駕駛員想要運(yùn)動(dòng)的方向,通過(guò)控制角度,油門(mén)踏板的位置,制動(dòng)板的狀態(tài)來(lái)確定汽車(chē)實(shí)際運(yùn)動(dòng)路線的偏航比率(汽車(chē)偏離方向軸的角度)和橫向加速度”。項(xiàng)目負(fù)責(zé)人阿明·馬勒領(lǐng)導(dǎo)著范桑特的工作小組和奔馳汽車(chē)公司的工程師 發(fā)明了第一個(gè)完全有效的穩(wěn)定調(diào)節(jié)系統(tǒng),該系統(tǒng)由
68、發(fā)動(dòng)機(jī)扭矩控制、制動(dòng)系統(tǒng)、牽引控制系統(tǒng)組成以實(shí)現(xiàn)最小的理想與現(xiàn)實(shí)的運(yùn)動(dòng)差距。</p><p> 汽車(chē)安全專(zhuān)家相信穩(wěn)定調(diào)節(jié)系統(tǒng)能夠減少交通事故的發(fā)生,至少是在嚴(yán)重的損壞事故。安全統(tǒng)計(jì)表明,多數(shù)的單車(chē)撞擊致命事故(占致命事故發(fā)生的4%)能夠通過(guò)應(yīng)用這項(xiàng)新技術(shù)避免。這項(xiàng)新系統(tǒng)的額外費(fèi)用主要用于一系列目前汽車(chē)日益普遍應(yīng)用的制動(dòng)/牽引控制鎖組件。</p><p> 穩(wěn)定調(diào)節(jié)系統(tǒng)技術(shù)首次應(yīng)用于歐洲
69、的奔馳S600汽車(chē),是由德國(guó)斯圖加特市的羅伯特博施公司和奔馳公司在過(guò)去幾年共同研制的。該系統(tǒng)在博施公司被稱(chēng)為汽車(chē)動(dòng)力控制(VDC),而默西迪思叫它穩(wěn)定電控計(jì)劃(ESP),作用就是在任何狀況下維持車(chē)輛的穩(wěn)定性。博施公司開(kāi)發(fā)了這項(xiàng)系統(tǒng),奔馳公司把它應(yīng)用于車(chē)輛。工程師默西迪絲在柏林應(yīng)用近乎藝術(shù)的代姆勒奔馳汽車(chē)虛擬駕乘模擬器在極限情況下對(duì)系統(tǒng)進(jìn)行評(píng)估,例如極強(qiáng)的側(cè)風(fēng)。然后他們?cè)谌鸬涞陌步芷談诟浇暮竽韧甙埠谋嫔线M(jìn)行性能測(cè)試。工作通常是在公路
70、上進(jìn)行以適用于公共汽車(chē)和大卡車(chē),例如避免的折合問(wèn)題。</p><p> 穩(wěn)定調(diào)節(jié)系統(tǒng)將在1995年中應(yīng)用于歐洲S系列產(chǎn)品上,隨后會(huì)在1996年進(jìn)入美國(guó)市場(chǎng)(1995年11月產(chǎn)品)。用戶可以選擇750美元的系統(tǒng),就像應(yīng)用于默西迪絲的試驗(yàn)用的V8發(fā)動(dòng)機(jī)上的,也可以選擇價(jià)格為2400美元的應(yīng)用于六缸發(fā)動(dòng)機(jī)汽車(chē)的系統(tǒng)。后者的系統(tǒng)中差不多有1650美元是用于牽引控制系統(tǒng),該系統(tǒng)是穩(wěn)定性系統(tǒng)的先決條件。</p>
71、<p> 并不是只有博施公司一家在開(kāi)發(fā)這樣的安全系統(tǒng),美國(guó)密歇根州的ITT(美國(guó)國(guó)際電信公司)汽車(chē)公司的奧伯恩·希爾,在1995年1月底特律北美國(guó)際汽車(chē)展覽會(huì)上展示了了他們自己的汽車(chē)穩(wěn)定性管理系統(tǒng)(ASMS),</p><p> “車(chē)輛控制器應(yīng)該像空對(duì)地導(dǎo)彈的控制器那樣,比較而言,事實(shí)上那已經(jīng)實(shí)現(xiàn)了,不同的是兩者的費(fèi)用不同”,美國(guó)國(guó)際電信公司駐歐洲空對(duì)地導(dǎo)彈控制工程負(fù)責(zé)人約翰尼斯
72、83;格雷得說(shuō)。北美ITT公司“汽車(chē)制動(dòng)和底盤(pán)工程”主管湯姆·麥茲指出,在未來(lái)十年美國(guó)國(guó)際電信公司的系統(tǒng)要首先出現(xiàn)在車(chē)輛上。很多工程師正在為六輛最初制造精密的車(chē)輛模型上調(diào)試這個(gè)系統(tǒng)。</p><p> 一個(gè)略微低級(jí)和效率較低的博施穩(wěn)定調(diào)節(jié)系統(tǒng)也在1995年出現(xiàn)在慕尼黑寶馬公司的AG系列750iL和850Ci V-12兩款車(chē)上。寶馬公司的穩(wěn)定調(diào)節(jié)系統(tǒng)(DSC)運(yùn)用的車(chē)輪速度傳感器同牽引控制系統(tǒng)和標(biāo)準(zhǔn)AB
73、S防抱死系統(tǒng)一樣能夠辨認(rèn)外部情況,使車(chē)輛在沿曲線行駛和轉(zhuǎn)彎時(shí)更容易實(shí)現(xiàn)。為了檢測(cè)出車(chē)輛轉(zhuǎn)彎時(shí)潛在的危險(xiǎn),DSC系統(tǒng)檢測(cè)的是兩前輪在轉(zhuǎn)彎時(shí)的速度差,DSC系統(tǒng)添加了一個(gè)更高級(jí)的角度傳感器利用現(xiàn)有的一個(gè)車(chē)輛速度,并且引入了它自身帶有的關(guān)于完全抱死系統(tǒng)、牽引控制系統(tǒng)、穩(wěn)定調(diào)節(jié)系統(tǒng)軟件控制原理。</p><p> 新的博施和ITT自動(dòng)穩(wěn)定調(diào)節(jié)系統(tǒng)得益于航空工業(yè)高級(jí)技術(shù)的發(fā)展。就像超音速發(fā)動(dòng)機(jī),汽車(chē)的穩(wěn)定調(diào)節(jié)單元運(yùn)用一個(gè)
74、基于計(jì)算機(jī)系統(tǒng)的傳感器來(lái)調(diào)和人與系統(tǒng)之間的,還有輪胎與地面之間差異。另外,系統(tǒng)采用了用于導(dǎo)彈制導(dǎo)系統(tǒng)的回旋傳感器。</p><p> 高于ABS防抱死系統(tǒng)和牽引控制之處</p><p> 根據(jù)范·桑特和博施公司的瑞娜·伊哈德,杰瑞·帕夫在《汽車(chē)工程師》雜志所提到的,穩(wěn)定調(diào)節(jié)是ABS防抱死系統(tǒng)和牽引控制系統(tǒng)的合理擴(kuò)展。但是ABS系統(tǒng)的作用發(fā)生在制動(dòng)時(shí)車(chē)輪轉(zhuǎn)向
75、將被鎖死時(shí) ,牽引控制是預(yù)防加速時(shí)的車(chē)輪滑動(dòng),穩(wěn)定系統(tǒng)是當(dāng)汽車(chē)自由轉(zhuǎn)向時(shí)能獨(dú)立于駕駛員作出操作。依靠不同的駕駛狀況系統(tǒng)可以使每個(gè)車(chē)輪制動(dòng)或者迅速使四個(gè)輪轉(zhuǎn)速適合于發(fā)動(dòng)機(jī)的扭矩,從而使車(chē)輛穩(wěn)定和減少由于制動(dòng)失控帶來(lái)的危險(xiǎn)。新系統(tǒng)不僅僅控制完全制動(dòng)還可以作用與部分制動(dòng)、行車(chē)路線,加速度、車(chē)輪與發(fā)動(dòng)機(jī)動(dòng)作的滯后等,這些是ABS防抱死系統(tǒng)和牽引控制系統(tǒng)所遠(yuǎn)遠(yuǎn)不能達(dá)到的。</p><p> 三種積極的安全系統(tǒng)的作用時(shí)刻的
76、是一致的,那就是一個(gè)車(chē)輪被鎖死或者車(chē)輪漸漸失去方向穩(wěn)定性或者車(chē)輪使得行駛更加困難。如果一輛車(chē)必須在地摩擦路面制動(dòng),必須避免車(chē)輪抱死以保持行駛穩(wěn)定性和可駕駛性。</p><p> ABS防抱死系統(tǒng)和牽引控制系統(tǒng)能夠預(yù)防側(cè)滑,而穩(wěn)定性系統(tǒng)采取減少側(cè)面穩(wěn)定措施.如果行駛車(chē)輛的側(cè)力不再適當(dāng)?shù)姆峙湓谝粋€(gè)或者更多輪上,車(chē)輛就會(huì)失穩(wěn),尤其是車(chē)輛沿曲線行駛時(shí)。駕駛員感覺(jué)到的“搖擺”起初是彎轉(zhuǎn)或者與車(chē)的坐標(biāo)形成一個(gè)紡錘形時(shí)。一個(gè)
77、獨(dú)立的傳感器必須能夠識(shí)別這個(gè)“紡錘”,而 ABS防抱死系統(tǒng)和牽引控制系統(tǒng)通過(guò)車(chē)輪的轉(zhuǎn)速不能檢測(cè)車(chē)輛的橫向運(yùn)動(dòng)</p><p><b> 轉(zhuǎn)向操作</b></p><p> 新系統(tǒng)通過(guò)對(duì)微小的汽車(chē)轉(zhuǎn)向不足(當(dāng)車(chē)輛對(duì)于方向盤(pán)操作反應(yīng)遲緩)和方向盤(pán)的“過(guò)敏”反應(yīng)(后輪發(fā)生來(lái)回?cái)[動(dòng)) 。當(dāng)車(chē)輛在轉(zhuǎn)向時(shí)如果發(fā)生轉(zhuǎn)向不足和突然轉(zhuǎn)向運(yùn)動(dòng)時(shí),穩(wěn)定調(diào)節(jié)系統(tǒng)能夠通過(guò)后輪進(jìn)行內(nèi)部制動(dòng)(
78、針對(duì)曲線)糾正錯(cuò)誤。這種情況是駕駛員部感覺(jué)類(lèi)似于ABS防抱死系統(tǒng)接近于抱死極限,而是車(chē)輛不失去控制。穩(wěn)定調(diào)節(jié)系統(tǒng)能夠通過(guò)發(fā)動(dòng)機(jī)節(jié)流或者單輪制動(dòng)來(lái)減小推動(dòng)力。</p><p> 博施公司的研究員解釋說(shuō):“側(cè)面偏離角度表明此時(shí)車(chē)輛的偏航靈敏性,并反映為轉(zhuǎn)向角度,轉(zhuǎn)向角度隨著車(chē)輛偏離角度的增大而減小。一旦偏離角度超過(guò)某一限度,駕駛員就很難重新進(jìn)行操作。在干燥的路面偏離角度不能夠超過(guò)10度,而在積雪路面上極限偏離角度為
79、4度。</p><p> 多數(shù)司機(jī)沒(méi)有從制動(dòng)中恢復(fù)的經(jīng)驗(yàn)。他們不知道輪胎和地面之間的摩擦系數(shù),更不知道他們的車(chē)的側(cè)緣穩(wěn)定邊界。當(dāng)極限被沖破時(shí),駕駛員通常會(huì)很緊張以至于做出錯(cuò)誤的反應(yīng)。ITT的格雷柏解釋說(shuō):“過(guò)渡轉(zhuǎn)向引起車(chē)輛擺尾,試車(chē)更快的失控。ASMS傳感器能夠快速的檢測(cè)到制動(dòng)開(kāi)始時(shí)各個(gè)車(chē)輪的活動(dòng),從而使車(chē)輛恢復(fù)到穩(wěn)定行駛線。</p><p> 對(duì)于穩(wěn)定調(diào)節(jié)系統(tǒng)界面的友好性是很重要的,
80、這樣可以預(yù)言帶有穩(wěn)定系統(tǒng)的駕駛和普通駕駛給人的感覺(jué)沒(méi)有什么區(qū)別。</p><p> 穩(wěn)定系統(tǒng)最大的優(yōu)點(diǎn)在于速度,它不僅可以對(duì)制動(dòng)作出快速反應(yīng),還可以對(duì)車(chē)輛狀況(例如車(chē)重變化,輪胎磨損)、路面質(zhì)量作出快速反應(yīng)。這樣系統(tǒng)就能夠通過(guò)干邊側(cè)面受力穩(wěn)定化處理達(dá)到最好的駕駛穩(wěn)定性。</p><p> 穩(wěn)定系統(tǒng)識(shí)別駕駛員想做的(理想路線)和車(chē)輛實(shí)際行駛路線(實(shí)際路線)的不同,目前的汽車(chē)需要一套高效的
81、傳感器和一臺(tái)高效處理信息的計(jì)算機(jī)。</p><p> 博施公司的VDC/ESP電子控制單元有一個(gè)由兩個(gè)48兆的ROM組成的傳統(tǒng)實(shí)驗(yàn)電路板。范桑特說(shuō):“48KB的內(nèi)存容量是大量用以完成設(shè)計(jì)任務(wù)的‘智能’的代表”。他在SAE中指出,ABS防抱死系統(tǒng)是獨(dú)立的,只提供四分之一的這樣的容量,而ABS和牽引控制系統(tǒng)組合在一起的容量只有這個(gè)軟件容量的一半。</p><p> 除了ABS防抱死系統(tǒng)和牽
82、引控制系統(tǒng)所具有的關(guān)系傳感器外,VDC/ESP運(yùn)用了偏航比率傳感器、橫向加速度傳感器、轉(zhuǎn)向角傳感器、制動(dòng)壓力傳感器來(lái)獲取汽車(chē)的加速、搖擺或者剎車(chē)的信息。系統(tǒng)通過(guò)管理員獲得所需的通常的路面信息。方向盤(pán)上的傳感器裝在一組安裝在方向盤(pán)上的發(fā)光二極管和光敏二極管上。一只硅壓力傳感器通過(guò)控制前輪剎車(chē)環(huán)內(nèi)壓力油的壓力控制制動(dòng)壓力(因?yàn)閯x車(chē)壓力來(lái)源于駕駛員)。</p><p> 確定車(chē)輛實(shí)際的行駛路線是一項(xiàng)非常復(fù)雜的工作
83、。通過(guò)必須的縱向滑動(dòng)車(chē)輪速度傳感器提供給反向制動(dòng)或者牽引控制系統(tǒng)的車(chē)輪轉(zhuǎn)速信號(hào),以對(duì)可能發(fā)生的動(dòng)作作出精確的分析,無(wú)論如何側(cè)向難預(yù)料的運(yùn)動(dòng)分析是必須的,所以系統(tǒng)必須再拓展兩個(gè)額外的傳感器---偏航比率傳感器和側(cè)向加速度傳感器。</p><p> 橫向加速度表檢測(cè)沿曲線行駛時(shí)所帶來(lái)的受力狀況。這種類(lèi)似的傳感器通過(guò)一臺(tái)直線霍爾發(fā)電機(jī)把彈簧的直線運(yùn)動(dòng)轉(zhuǎn)變成電信號(hào)來(lái)實(shí)現(xiàn)對(duì)彈簧機(jī)構(gòu)的控制。這種傳感器必須很靈敏,它的控制
84、角為±1.4g。</p><p><b> 偏航比率回轉(zhuǎn)儀</b></p><p> 最新的穩(wěn)定調(diào)節(jié)系統(tǒng)的核心在于類(lèi)似于陀螺儀的偏航比率回轉(zhuǎn)儀。傳感器測(cè)量車(chē)輛對(duì)豎直軸的旋轉(zhuǎn)。這個(gè)測(cè)量原理來(lái)源于航空工業(yè),并且被博施公司大規(guī)模的應(yīng)用于汽車(chē)工業(yè)?,F(xiàn)有的回轉(zhuǎn)儀市場(chǎng)提供兩種選擇,一種是應(yīng)用與航空航天業(yè)的價(jià)值6000美元(由位于英國(guó)羅徹斯特的美國(guó)通用電器公司航空股份
85、有限公司提供),另一種是用于照相機(jī)的價(jià)值160美元。由SAE報(bào)得知博施公司采取一種圓柱形設(shè)計(jì)方案以實(shí)現(xiàn)低成本下的高性能。這種傳感器需要一項(xiàng)更大的投資以應(yīng)對(duì)汽車(chē)所處的極端環(huán)境狀態(tài)。同時(shí)偏航比率回轉(zhuǎn)儀的價(jià)格必須降低,這樣才能充分應(yīng)用與汽車(chē)。</p><p> 偏航比率回轉(zhuǎn)儀有一個(gè)復(fù)雜的內(nèi)部結(jié)構(gòu),其內(nèi)部是有一個(gè)很小的圓柱形鋼管伺服測(cè)量元件。圓柱的薄壁上有壓電元件能夠在15千赫茲的頻率下震動(dòng)。四對(duì)這樣的感應(yīng)器安放在圓柱
86、體的周?chē)?,一?duì)元件的位置與另一對(duì)的位置相對(duì)。其中的一對(duì)通過(guò)應(yīng)用正弦電壓引起柱體在其固有頻率下產(chǎn)生共振,并將振動(dòng)傳送給變頻器。在每一對(duì)傳感器之間,振顫節(jié)點(diǎn)繞著汽車(chē)的垂直軸作細(xì)微的運(yùn)動(dòng)。這時(shí)如果沒(méi)有偏航輸入,震動(dòng)曲線就是一條穩(wěn)定的曲線。如果有信號(hào)輸入,節(jié)點(diǎn)的位置和曲線的波谷就會(huì)在相對(duì)的防線繞著圓筒壁做旋轉(zhuǎn)運(yùn)動(dòng)(科里奧利加速度)。這個(gè)輕微的位移就會(huì)成為汽車(chē)偏航比率的度量標(biāo)準(zhǔn)。</p><p> 穩(wěn)定調(diào)節(jié)系統(tǒng)會(huì)在車(chē)輪打
87、滑,或者側(cè)面打滑時(shí)必須時(shí)失去效果,例如 在雪天給汽車(chē)安裝合適的防護(hù)鏈或者車(chē)在松軟的沙粒中行走時(shí)。</p><p> 許多司機(jī)把新系統(tǒng)在光滑轉(zhuǎn)彎處他們的車(chē)尾部將要被甩出去的時(shí)候被“推”回到正確的軌跡上經(jīng)驗(yàn)相互宣傳。 </p><p> 許多觀察員指出,穩(wěn)定調(diào)節(jié)系統(tǒng)可能會(huì)使司機(jī)在地摩擦力的路面過(guò)分自信,盡管他們占少數(shù)。或許需要指導(dǎo)司機(jī)怎樣來(lái)完全正確的使用穩(wěn)定調(diào)節(jié)系統(tǒng)。 就像當(dāng)初讓司機(jī)學(xué)習(xí)不
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---汽車(chē)的轉(zhuǎn)向控制
- 汽車(chē)的轉(zhuǎn)向控制外文翻譯
- 外文翻譯--汽車(chē)的轉(zhuǎn)向控制.doc
- 外文翻譯--汽車(chē)的轉(zhuǎn)向控制.doc
- 汽車(chē)專(zhuān)業(yè)畢業(yè)設(shè)計(jì)外文翻譯--汽車(chē)的轉(zhuǎn)向控制
- 畢業(yè)設(shè)計(jì)外文翻譯---汽車(chē)的轉(zhuǎn)向控制
- 外文翻譯--四輪轉(zhuǎn)向汽車(chē)的轉(zhuǎn)向特性及控制技術(shù)
- 外文翻譯--汽車(chē)轉(zhuǎn)向系統(tǒng)
- 汽車(chē)轉(zhuǎn)向器外文翻譯
- 外文翻譯--傳統(tǒng)的汽車(chē)轉(zhuǎn)向系統(tǒng)
- 外文翻譯--汽車(chē)電子轉(zhuǎn)向系統(tǒng)
- 外文文獻(xiàn)翻譯 中英文對(duì)照 汽車(chē)專(zhuān)業(yè) 汽車(chē)的轉(zhuǎn)向控制
- 外文翻譯--汽車(chē)轉(zhuǎn)向助力系統(tǒng).doc
- 外文翻譯--汽車(chē)轉(zhuǎn)向系統(tǒng)工作原路介紹
- 外文翻譯--汽車(chē)轉(zhuǎn)向助力系統(tǒng).doc
- 英到漢-外文翻譯-汽車(chē)轉(zhuǎn)向系統(tǒng)
- 外文翻譯--汽車(chē)轉(zhuǎn)向助力系統(tǒng).doc
- 汽車(chē)外文翻譯---駕駛者的轉(zhuǎn)向感
- 外文翻譯--汽車(chē)電動(dòng)助力轉(zhuǎn)向系統(tǒng)概述.doc
- 外文翻譯--汽車(chē)電動(dòng)助力轉(zhuǎn)向系統(tǒng)概述.doc
評(píng)論
0/150
提交評(píng)論