2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  中文3573字 </b></p><p>  畢業(yè)設(shè)計(論文)外文文獻(xiàn)翻譯</p><p> 翻譯題目袋式除塵器在DAP裝置中的應(yīng)用</p><p> 學(xué) 院機(jī)械工程學(xué)院</p><p> 專 業(yè)車輛工程</p><p>  袋式除塵器在DAP裝置中的應(yīng)用

2、</p><p>  摘要:袋式除塵器雖然在磷銨廠沒有廣泛的應(yīng)用,但是,在某些情況下,使用他們代替氣旋跟洗滌器也是有可能的,本文探討最合適的氣流在廠袋式除塵器的應(yīng)用,分析它們在在每種情況下的優(yōu)點(diǎn)和缺點(diǎn),包括對一個具體案例的經(jīng)濟(jì)評價,本文還討論了成功使用袋式除塵器必要的設(shè)計特點(diǎn)。</p><p>  1.袋式除塵器的類型:</p><p>  常用的袋式過濾器有三種基

3、本類型,如下:</p><p><b>  脈沖式</b></p><p><b>  逆氣流清灰式</b></p><p><b>  機(jī)械振動清灰式</b></p><p>  機(jī)械振動式除塵器的濾袋固定在底部管板,袋子的底部是開放的,臟空氣進(jìn)入料斗并向上繼續(xù)運(yùn)動到濾袋,把

4、灰塵沉積在里面。對于脈沖式,袋子的底部是封閉的,開放的頂部固定管板,臟空氣進(jìn)入料斗或袋式過濾器殼體的一側(cè),從濾袋的外面到里面通過并把灰塵慢慢沉積下來。逆氣流清灰式袋式除塵器既可以收集在濾袋里面,也可在濾袋外面。</p><p>  在逆氣流清灰式中,在清潔周期,袋式除塵器被劃分了跟其余部分隔離,目的是得到更好的清洗。袋的空氣由風(fēng)扇或風(fēng)扇大逆流清洗,取決于粉塵收集在濾袋內(nèi)或濾袋外,同時,空氣在對濾袋增壓的過程也會使

5、其得到清潔,袋的部分會產(chǎn)生折疊或者受壓,不管是濾餅產(chǎn)生裂縫還是袋子發(fā)生了脫落。</p><p>  操作的原理如圖1所示:</p><p>  圖1:使用袋式除塵器的基本類型</p><p>  機(jī)械振動式袋式除塵器被再次劃分。當(dāng)水平桿穿過殼體的頂部時,濾袋被懸浮起來,通過電機(jī)驅(qū)動的凸輪使袋懸浮時產(chǎn)生的間歇運(yùn)動來進(jìn)行清灰。</p><p> 

6、 而脈沖式袋除塵器的濾袋則由壓縮空氣產(chǎn)生的一個短沖擊進(jìn)行清灰,通常在7kg/cm2 g,通過位于每排袋頂部的一系列的公共頭注入。清潔的空氣被每個袋上的文丘里噴嘴加速,空氣短脈沖產(chǎn)生的沖擊波使其在袋內(nèi)停留時間受到影響,從而造成了袋的變形以及濾餅的移位。濾袋被其里面的一個個金屬小籠支持起來,目的是為了防止器發(fā)生破裂,因為清潔的空氣跟主要的加工氣體比起來是微乎其微的,沒有必要單獨(dú)去劃分這種類型的袋除塵器。脈沖式清灰一般收非常有效的,因為所有袋

7、的運(yùn)作是持續(xù)不斷的,而且空氣布率遠(yuǎn)高于其他兩種類型,因此在工廠所需空間更少。</p><p>  由于粉塵有時具有粘性和吸濕性的性質(zhì),施肥應(yīng)用并不容易,隨著不斷的發(fā)展,逆氣流清灰方式越來越少,而脈沖式清灰成為了工業(yè)清灰最有效的手段。因此,本文的剩余部分將著重闡述脈沖式清灰袋式除塵器。</p><p><b>  袋式除塵器設(shè)計特點(diǎn)</b></p><

8、;p><b>  2.1過濾袋/籠</b></p><p>  理論上,過濾袋是可折疊或光滑的,袋可以是圓柱形或信封狀。這里我們只推薦光滑的圓筒袋,這些袋直徑通常約為130mm,另外我們還建議,袋的長度限制在12英尺(3657毫米)內(nèi)以確保有效的清洗。</p><p>  材料和拋光將取決于被處理的粉塵性質(zhì),對于DAP,推薦使用帶釉面的聚丙烯 。</p&g

9、t;<p>  如前所述,金屬絲籠被插入每袋作為支撐。通常標(biāo)準(zhǔn)是鍍鋅籠,但這里我們建議不銹鋼籠。</p><p>  我們曾經(jīng)遇到過單元內(nèi)最外層袋與外殼的橋接問題,為了避免這個問題我們已經(jīng)成功把邊緣的袋移除,目的是增大殼與其最近的袋之間的空間,這有效的降低了從供應(yīng)商利率并避免了橋接問題。</p><p>  2.2.脈沖式袋除塵器的清灰系統(tǒng)</p><p&

10、gt;  壓縮空氣的噴射通常是由兩個定時器控制;一個控制頻率,另一個控制持續(xù)時間。</p><p>  脈沖的持續(xù)時間很短而有序,僅為0.1秒,頻率通過監(jiān)測壓力的升降來進(jìn)行設(shè)置,脈沖清灰通常足以防止一個預(yù)先設(shè)定的壓力降被超過。典型的壓力下降范圍在75到150毫米之間。它可以作為一個頻率定時器代替使壓降保持穩(wěn)定的壓力開關(guān)來使用,盡管我們沒有發(fā)現(xiàn)這是必要的,我們推薦使用雙隔膜電磁閥,因為它提供了極其快速的開啟時間并且

11、提高了清灰效率。</p><p><b>  2.3進(jìn)入排氣通風(fēng)</b></p><p>  如果裝置被放置在戶外,一個步入式通風(fēng)裝置被指定安裝在空氣室出口,如果放置在室內(nèi)則不需要這個裝置,無論哪種方式,一系列的快速釋放的檢查/維護(hù)艙口布置在裝置的頂部(見圖2)。打開這些艙口開口,氣體就可以進(jìn)入脈沖管,文氏管,袋籠和袋。如果裝置是安裝在室內(nèi),凈空必須進(jìn)行檢查以確保袋籠

12、徹底的隔離。在凈空高度受限制的情況下,可以指定分包籠。</p><p><b>  圖2</b></p><p>  文氏管通常連接到籠和袋帶有快速釋放彈簧鋼帶的地方(見圖3以下)</p><p><b>  圖3</b></p><p><b>  2.4.臟空氣入口</b>

13、</p><p>  通常廠商提供的臟空氣入口的是在殼體的一側(cè)或在漏斗的另一側(cè),當(dāng)灰塵負(fù)載非常高或者灰塵非常重時,漏斗入口由生產(chǎn)商提供,這樣可以作為一個預(yù)集漏斗,我們之前遇到入口問題時沒有很好的解決辦法,所以推薦使用側(cè)殼體入口。</p><p><b>  2.5.斗</b></p><p>  供應(yīng)商的標(biāo)準(zhǔn)產(chǎn)品,通常有多個漏斗,每個都有它自己

14、的流量,(特別是大的裝置),如圖2所示。我們發(fā)現(xiàn)這樣安裝會干擾斗之間的工作,所以不推薦這種安排,相比而言,我們更喜歡一個長的需要放在外面墻上有且有加強(qiáng)筋的楔形料斗。</p><p>  根據(jù)被處理的空氣條件(溫度,濕度等)我們會推薦蒸汽伴熱的料斗。</p><p>  建立在料斗壁也被證明是一個問題。使用的聲波號角,然而,已被證明有助于確保料斗壁保持干凈。</p><p

15、><b>  2.6集塵/氣閘</b></p><p>  收集的粉塵被螺旋輸送機(jī)回收參與造粒機(jī)的部分循環(huán),從而達(dá)到除塵目的,在袋式除塵器的抽吸作用下,密封艙需要減少或消除周圍空氣進(jìn)入過程氣的泄漏。傳統(tǒng)的密封艙采用旋轉(zhuǎn)閥來解決這個問題,但是我們不這么做,因為有很多經(jīng)驗可以證明,主要從維護(hù)的立場:–堵塞,對葉片的磨損等。</p><p><b>  2.

16、7停機(jī)注意事項</b></p><p>  大多數(shù)遇到的問題是停機(jī)時過程氣體溫度下降會導(dǎo)致空氣濕度上升,因此我們建議在再循環(huán)風(fēng)扇上再安裝一個可關(guān)閉的小加熱器。</p><p>  一個定時關(guān)機(jī),關(guān)閉主風(fēng)機(jī),關(guān)閉其入口擋板,加熱器風(fēng)扇啟動并和主機(jī)連線。風(fēng)扇循環(huán)空氣通過漏斗和袋出口增壓并再次回來。袋式除塵器單元內(nèi)的溫度由一個溫控器保持在某個設(shè)定點(diǎn),當(dāng)然整個袋式除塵器單元是絕緣的。&

17、lt;/p><p><b>  2.8袋破損檢測</b></p><p>  為了避免溫度的再循環(huán),干凈的氣體經(jīng)濾袋的烘干機(jī)后直接作為燃燒室的稀釋氣體。我們建議安裝一個粉塵監(jiān)測裝置監(jiān)測在氣流離開濾袋時其負(fù)荷的增加。為了避免高濃度的粉塵被檢測到,在濾袋被更換或堵塞時,可以暫時的把氣流轉(zhuǎn)向大氣層。</p><p><b>  DAP裝置的氣流

18、</b></p><p>  氣流經(jīng)烘干機(jī),冷卻器和總廠除塵(設(shè)備通風(fēng)口)是使用袋式除塵器粉塵回收的潛在途徑,典型的操作條件下,這些氣流在DAP裝置中參數(shù)如下表1</p><p><b>  表1</b></p><p>  烘干機(jī)由于其自身的高濕度以及氣流最終被消除的事實,所以一般不認(rèn)為它是袋式除塵器的合適“接班人”,還有就是在任

19、何情況下,其相對高的氨濃度剛好也成為了其的制約因素。</p><p>  人們通常要么考慮冷卻器要么考慮總廠除塵,在低粉塵濃度情況下較冷的氣流優(yōu)勢是很低的氨濃度。冷卻器的氣流跟烘干機(jī)差不多甚至超過它,所以所有的稀釋氣體由再生空氣冷卻器提供。在設(shè)備的通風(fēng)口,只能提供部分的稀釋氣體。下面的表2提供了詳細(xì)的可回收的熱量回收,不管是總廠除塵還是冷卻器氣流到烘干機(jī)。在設(shè)備通風(fēng)系統(tǒng)的氨濃度意味著一些洗滌也可能被要求把濃度降至

20、適當(dāng)范圍內(nèi),除非從袋式過濾器的清潔空氣循環(huán)通過烘干機(jī)燃燒室中的空氣稀釋。</p><p><b>  經(jīng)濟(jì)方面</b></p><p>  更換干旋風(fēng)和濕式洗滌與袋式除塵器相比,以下兩個方面會對成本造成影響。</p><p><b>  4.1冷卻器</b></p><p>  冷卻器氣流中,只有旋

21、風(fēng)尾氣洗滌器位于下游的旋風(fēng)才能被消除,通過氣旋和尾氣洗滌器的壓降約為75毫米,高于預(yù)期單獨(dú)單獨(dú)通過袋式除塵器的壓降,導(dǎo)致一些積蓄在風(fēng)扇和相關(guān)電機(jī)中,由于較少的空氣會被清洗,尾氣洗滌塔的尺寸(直徑和高度)隨著洗滌循環(huán)泵能力變化也將大大減少。</p><p>  下面的表2總結(jié)了與氣旋/濕式洗滌器與現(xiàn)代世界級的DAP裝置額定1000000噸袋除塵器選項相關(guān)聯(lián)的相對成本。</p><p><

22、;b>  表2</b></p><p>  總之,袋式除塵器的選擇是大約1000000美元,比傳統(tǒng)的旋風(fēng)和濕式除塵器的高。</p><p><b>  4.2設(shè)備的通風(fēng)口</b></p><p>  從設(shè)備排出氣流常將隨著來自反應(yīng)器/造粒機(jī)的氣體在文丘里旋風(fēng)除塵器中得到清洗,在旋流器的壓降將類似于在袋式過濾器的壓降。因為反應(yīng)器

23、/造粒機(jī)氣體現(xiàn)在得到單獨(dú)處理,但是,他們都需要與風(fēng)扇隔離開,由于較少的空氣會被清洗,隨著循環(huán)泵容量變化的文丘里旋風(fēng)和尾氣洗滌器的大小也將減少。</p><p>  下面的表3用類似上表2的方法總結(jié)了相對成本</p><p><b>  表3</b></p><p>  比較可知需要大致相同的資本支出</p><p>  

24、通過兩個方案比較可知,選用袋式除塵器可以節(jié)約能源,增加利用率,下面的表4總結(jié)了袋式除塵器通過回收利用熱空氣作為烘干機(jī)燃燒室稀釋氣體以節(jié)約燃油,同時,降低壓降也起到了節(jié)電的作用。</p><p><b>  表4</b></p><p>  注:每噸消耗400美元的燃油,每千瓦時花費(fèi)2.5美分的電力成本假設(shè)都已包含在表內(nèi)</p><p><

25、b>  結(jié)論</b></p><p>  冷卻器氣流中使用袋式除塵器的將需要大約1000000美元的額外資本支出。</p><p>  但在不超過3年的時間,額外的支出將在節(jié)約能源中重新獲得。</p><p>  提供被回收的熱空氣作為烘干機(jī)燃燒室的稀釋氣體,對設(shè)備的通風(fēng)系統(tǒng)安裝袋式除塵器在經(jīng)濟(jì)上是非常有吸引力的。前期的資本支出跟濕式除塵器的差不多

26、,1000000噸/年DAP裝置每年將節(jié)省約450000美元。</p><p>  至少,袋式過濾器應(yīng)在增加容量作為替代建設(shè)更多或更大的清洗裝置的改造情況下得到重視</p><p><b>  外文翻譯考核表</b></p><p>  The Use of Bag Filters in a DAP Plant</p><p

27、>  David M. Ivell a *</p><p>  Jacobs Engineering SA(JESA), 3149 Winter Lake Road., Lakeland, FL 33803, USA</p><p><b>  Abstract</b></p><p>  Bag filters have not bee

28、n commonly used in DAP plants. It is possible, however, to employ them as an alternative to cyclones and wet scrubbers in certain circumstances. This paper examines the most appropriate airstreams within the plant for th

29、e application of bag filters uses and discusses the pros and cons for their use in each case, including an economic assessment for a specific example. The paper also discusses the necessary design features for the succes

30、sful use of bag filters.</p><p>  Bag filter types</p><p>  There are three basic types of bag filter available, namely:</p><p>  1. Pulse Jet</p><p>  2. Reverse Air&l

31、t;/p><p>  3. Mechanical Shaker </p><p>  The bags in mechanical shaker type filters are anchored to a bottom tube plate. The bottoms of the bags are open. The dirty air enters in the hopper and tr

32、avels up the inside of the bags, depositing the dust on the inside. With the pulse jet type,</p><p>  the bottoms of the bags are closed and the open tops are anchored to a tube plate. The dirty air enters,

33、either in the hopper or the side of the bag filter casing, and passes from the outside to the inside of the bags depositing the dust on the outside of</p><p>  the bags. Reverse air type filters can have eit

34、her dust collection on the inside or outside of the bags.</p><p>  In the reverse air type, the bag filter is compartmentalized such that the bags being cleaned are isolated from the remainder of the unit du

35、ring the cleaning cycle. The bags are cleaned by a large reverse flow of air supplied by a fan or fans. Depending on whether the dust is collected on the inside or outside of the bag, the air either pressurizes the compa

36、rtment being cleaned and partially collapses the bags or pressurizes the bags. In either case the dust cake cracks and falls off the bags.</p><p>  The principle of operation of each is shown below in Figure

37、 1:</p><p>  Figure 1: Basic types of bag filter available</p><p>  Mechanical shaker type bag filters are again compartmentalized. The bags are suspended from horizontal bars running across the

38、 top of the housing. The bags are cleaned by intermittently shaking the bars from which the bags are suspended using a motor driven cam.</p><p>  The bags in the pulse jet type filter are cleaned by a short

39、burst of compressed air, typically at 7 kg/cm 2 g, injected through a series of common headers located over the top of each row of bags. The cleaning air is accelerated through venturi nozzles located above each bag. The

40、 short burst of air creates a shock wave effect traveling down the length of the bag causing the bags to flex and dislodge the cake. The bags are supported by a metal cage on the inside of each bag which prevents the ba&

41、lt;/p><p>  Fertilizer applications are not the easiest due to the sometimes sticky and hygroscopic nature of the dust. Our experience with reverse air bag filters has been poor whereas pulse-jet type filters h

42、ave been found to be the most effective for use in our industry. We will, therefore, concentrate on pulse jet filters for the remainder of this paper.</p><p>  Filter bag design features</p><p>

43、  2.1 Filter Bags / Cages</p><p>  In theory filter bags can be pleated or smooth. Bags can be cylindrical or envelope shaped. We recommend only smooth, cylindrical bags. These bags are typically about 130 m

44、m in diameter. We also recommend that bag length be limited to no more than 12 ft (3657 mm) to ensure efficient cleaning.</p><p>  The material and finish applied to the bag will depend on the properties of

45、the dust being handled. However for DAP, polypropylene with a glazed finish is recommended.</p><p>  As mentioned earlier, a metal wire cage is inserted into each bag as a support. Galvanized cages are typic

46、ally the standard, but we recommend stainless cages.</p><p>  We have experienced some problems with bridging between the outermost bags in the unit and the outside casing. To avoid this we have had success

47、with removing all bags around the periphery to increase the space between the casing and the nearest bag. This effectively down-rates the standard offering from the vendor but does avoid the bridging problem.</p>

48、<p>  2.2 Pulse Jet Cleaning System</p><p>  The compressed air injection is normally controlled by two timers; one for frequency and the other for duration. The duration of the pulse is very short – of

49、 the order of 0.1 seconds. The frequency is set by monitoring the rise in pressure drop and pulse cleaning often enough to prevent a pre-set pressure drop from being exceeded. Typical pressure drops are in the range of 7

50、5 to 150 mm. It is possible to replace the frequency timer with a pressure switch which actuates the pulse cleaning to main</p><p>  2.3 Access to the Outlet Air Plenum</p><p>  If the unit is t

51、o be placed outdoors, a walk-in plenum is specified to gain access to the outlet air plenum. For indoor</p><p>  locations, a walk-in plenum is not required. Either way, a series of quick release inspection

52、/ maintenance hatches are provided in the top of the unit (see Figure 2 below). Opening of these hatches allows access to the pulse pipes, venturis, bag cages and bags. If the units are installed indoors, headroom must b

53、e checked to make sure that the bag cages can be fully removed. In case of headroom limitations, split bag cages can be specified.</p><p><b>  Figure 2</b></p><p>  Venturis are norm

54、ally attached to the cages and the bags are held in place with quick release spring steel bands (See Figure</p><p><b>  3 below).</b></p><p><b>  Figure 3</b></p>

55、<p>  2.4 Dirty Air Inlet</p><p>  Typically vendors provide the choice of dirty air inlets on the side of the housing or in the side of the hopper. Hopper entry is recommended by vendors when dust load

56、ings are very high or the dust is very heavy. In this way the hopper supposedly functions as a pre-collector. Our experience with hopper entry has not been good with build up problems being encountered in the hopper. We

57、therefore recommend side-housing entry.</p><p>  2.5 Hopper</p><p>  Vendor’s standard offerings typically have multiple hoppers each with its own discharge, (especially for larger units), as<

58、;/p><p>  shown in Figure 2 above. We recommend against that arrangement as we have found that hopper build- up occurs where one hopper joins the other. We prefer one long, wedge-shaped hopper with any stiffene

59、rs that are required placed on the outside walls.</p><p>  Depending on the condition of the air being handled (temperature, humidity etc.) we may recommend steam tracing of the hopper. </p><p>

60、  Build up on the walls of the hopper has also proven to be a problem. The use of sonic horns, however, has proved useful in ensuring that hopper walls are kept clean.</p><p>  2.6 Dust Collection / Airlock&

61、lt;/p><p>  The dust collected in the hopper is removed by screw conveyor for recovery as part of the recycle to the granulator. Since the bag filter is under suction, an airlock is required to minimize or elim

62、inate leakage of the surrounding air into the process airstream. The traditional airlock used in this duty has been a rotary valve. We do not, however, have good experience with rotary valves in fertilizer duty, mainly f

63、rom a maintenance standpoint: – blockages, wear on the vanes etc.</p><p>  2.7 Shutdown Precautions</p><p>  Most problems that are encountered with build up occur on shutdown when the temperatu

64、re of the process air drops causing humidity to rise. We therefore recommend installing a small shutdown heater with recirculation fan.</p><p>  A shutdown timer shuts down the main fan and closes its inlet

65、damper. The heater fan starts and the heater is brought on line. The fan circulates the air through the hopper and the bags to the outlet air plenum and back again. The temperature inside the bag filter unit is maintaine

66、d at the desired set point by a thermostat. The entire bag filter unit, of course, is insulated</p><p>  2.8 Bag Breakage Detection</p><p>  In cases where the plan is to recycle the warm, clean

67、 gases from the bag filter to the dryer as dilution air in the combustion chamber, we recommend the installation of a dust monitor to detect any increase in dust loading in the airstream leaving the filter. In case high

68、levels of dust are detected, the airstream is diverted to atmosphere temporarily until the bag can be replaced or plugged.</p><p>  DAP plant airstreams</p><p>  The airstreams from the dryer, c

69、ooler and general plant dedusting (equipment vents) are potential candidates for dust recovery using bag filters. Typical operating conditions for each of those airstreams in a DAP plant are given below in Table 1.</p

70、><p><b>  Table 1</b></p><p>  Dryer Cooler Equipment Vents</p><p>  Temperature, o C 88 58 72</p><p>  Humidity,kg/kg

71、 0.135 0.02 0.02</p><p>  Relative Humidity,% 11 15 7</p><p>  Dust Loading,g/m 3 30 3 50</p><p&g

72、t;  Ammonia Loading,g/m3 4 Negligible 1</p><p>  The dryer is not generally considered as a suitable candidate for a bag filter due to its high humidity and the fact that the</p>

73、<p>  airstream ultimately needs to be scrubbed, in any case, due to its relatively high ammonia concentration.</p><p>  Either the cooler or equipment vent’s airstreams could be considered. The very lo

74、w ammonia concentration in the cooler airstream is an advantage as is the low dust concentration. The cooler airflow matches or exceeds that of the dryer so that all the dilution air requirements would be provided by rec

75、ycled cooler air. In the equipment vents case, only part of the dilution air requirements would be provided. Table 2 below provides details of the heat that can be recovered by recycling either the e</p><p>

76、  The ammonia concentration in the equipment vents system means that some scrubbing would probably also be required to bring the concentration down within proper limits, unless the clean air from the bag filter is recycl

77、ed through the dryer as dilution air in the combustion chamber.</p><p><b>  Economics</b></p><p>  The impact on capital cost of replacing dry cyclones and wet scrubbing with a bag f

78、ilter is compared below for each of the two options.</p><p>  4.1 Cooler</p><p>  The cooler airstream is typically scrubbed only in a cyclonic tail gas scrubber located downstream of the cyclon

79、es. The pressure drop across the cyclones and the tail gas scrubber is approximately 75 mm higher than would be expected across the bag filter alone, resulting in some savings on the fan and associated motor. Since less

80、air will be scrubbed, the size (diameter and height) of the tail gas scrubber will also be significantly reduced along with the capacity of the scrubber circulating pum</p><p>  Table 2 below summarizes the

81、relative capital costs associated with the cyclones / wet scrubber versus the bag filter option for a modern world class DAP plant rated at 1 million tonnes per year.</p><p>  Table 2

82、 </p><p>  Total Installed Costs, US $ Cyclones / Wet Scrubber Bag Filter</p><p><b>  Cyclones</b></p><p><b>  Fan</b></p><p>  Ta

83、il Gas Scrubber</p><p>  Stack $6,450,000 $7,450,000</p><p>  Tail Gas Scrubber Pumps</p><p>  Bag Filter</p><p>  In summary, t

84、he bag filter option is approximately $1 million more than the traditional cyclones and wet scrubber option.</p><p>  4.2 Equipment Vents</p><p>  The airstream from the equipment vents is typi

85、cally scrubbed in a venturi-cyclonic scrubber along with the gases from the reactor/granulator. The pressure drop across the cyclones is expected to be similar to the pressure drop across the bag filter. Since the reacto

86、r/granulator gases are now treated independently, however, both will necessitate separate fans. Since less air will be scrubbed, the size of both the venturi-cyclonic and tail gas scrubbers along with the capacities of t

87、heir circulati</p><p>  Table 3 below summarizes the relative costs in a similar fashion to Table 2 above.</p><p><b>  Table 3</b></p><p>  Installed Costs, US $ Cycl

88、ones / Wet Scrubber Bag Filter</p><p><b>  Cyclones</b></p><p><b>  R/G V Fan</b></p><p>  R/G V Scrubber</p><p>  Primary Scrubber Pumps

89、 $10,600,000 $10,600,000 </p><p>  Tail Gas Scrubber</p><p><b>  Stack</b></p><p>  Tail Gas Scrubber Pumps</p><p>  Bag Filter</p>&

90、lt;p><b>  Vents Fan</b></p><p>  In summary both options require approximately the same capital outlay.</p><p>  There are energy savings that accrue from utilizing a bag filter i

91、n either option. Table 4 below summarizes the fuel oil saving from recycling the warm air from the bag filter for use as dilution air in the dryer combustion chamber. Also, the savings in power due to lower pressure drop

92、s are presented.</p><p><b>  Table 4</b></p><p>  Cooler Equipment Vent</p><p>  Heat Recovered per tonne DAP (kcals / 8,318 0.35 9,416 0.39</p>&l

93、t;p><b>  $)</b></p><p>  Power Saving per tonne DAP (kWh / $) 1.6 0.04 2.3 0.06</p><p>  Annual Savings $390,000 $450,000</p>

94、<p>  Note: Fuel Oil costs of $400 per tonne and power costs of 2.5 cents per kWh were assumed in the table above.</p><p>  Conclusions</p><p>  The use of a bag filter on the cooler airst

95、ream will require an additional capital outlay of the order of $1.0 Million. This could be recouped in energy savings in less than three years.</p><p>  Provided that the warm air is recycled as dilution ai

96、r to the dryer combustion chamber, installation of a bag filter on the equipment vents system is economically very attractive.The upfront capital outlay is about the same as the wet scrubber option, Annual savings of app

97、roximately $450,000 per year can be realized on a 1.0 Million tonne/year DAP plant.</p><p>  At the very least, bag filters should be strongly considered in a revamp situation when a capacity increase is des

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論