工程招標(biāo)外文翻譯--多準(zhǔn)則支持招標(biāo)(節(jié)選)_第1頁(yè)
已閱讀1頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  中文4350字,2900英文單詞,16500英文字符</p><p>  文獻(xiàn)出處:Seydel J, Olson D L. Multicriteria support for construction bidding[J]. Mathematical & Computer Modelling, 2001, 34(5):677-701.</p><p>  M

2、ulticriteria Support for Construction Bidding</p><p>  J.SEYDEL, D.L.OLSON</p><p>  Abstract-While profit maximization is one important objective in this decision domain, other objectives are im

3、portant as well. This paper discusses multiple criteria and their respective objectives in construction bidding, and presents a bidding framework which recommends a pairwise comparison procedure to generate criterion wei

4、ghts and a linear transformation procedure to calculate relative scores for bidding alternatives. This hybrid multicriteria method is illustrated and evaluated using set </p><p>  Keywords-Bidding Constructi

5、on, Multicriteria analysis, Decision theory.</p><p>  1. INTRODUCTION</p><p>  Competitive bidding presents numerous tradeoffs to those who submit bids for work on construction projects. If a bi

6、d is relatively high, then the probability the bid will be accepted is relatively low, thus resulting in: low expected revenues, low equipment and personnel utilization, and the opportunity for a competitor to build his/

7、her standing in the industry. However, such a bid, should it be accepted, will also result in higher profits, less chance of a loss resulting from unforeseen costs, </p><p>  This research should be of inter

8、est to the many decision makers (DMs) who face these tradeoffs regularly. Nearly all public (and a substantial amount of residential) construction projects involve competitive bidding, and construction is a major industr

9、y throughout the world. In the United States, for example, construction activity accounted for nearly five percent of the country’s gross national product in the 1980s according to reports of the Bureau of Census [1] and

10、 the Economic Report of the </p><p>  1.1 Multicriteria Nature of Bidding</p><p>  Multiple criteria involved in bidding have been discussed for decades. In the first known work formalizing bidd

11、ing optimization, Friedman addressed the existence of multiple bidding criteria by listing objectives of profit maximization, maximizing return on investment, minimization of loss expectation, minimizing competitor profi

12、ts, and maximizing operational continuity [4]. Boughton addressed these multiple objectives as well [6]. Not unexpectedly, he found, in a survey of 126 construction firm</p><p>  Actual applications of multi

13、criteria analysis to competitive bidding are limited, however. Engelbrecht-Wiggans developed a descriptive model analyzing the simultaneous maximization of profit and minimization of two forms of regret [9]. The first ge

14、neral prescriptive applications of multicriteria methodology in competitive bidding are found in [l&12]. Ahmad proposed a twostage approach, based on multiattribute utility theory (MAUT), for the decision of whether

15、or not to bid on a project, and then</p><p>  1.2 Scope of Consideration</p><p>  Besides the studies indicated above, there have been numerous other studies addressing competitive bidding in a

16、variety of applications, as discussed in an extensive survey by Engelbrecht-Wiggans [18]. To aid in the analysis of the many existing bidding applications, King and Mercer developed a classification scheme to summarize p

17、roblems addressed by this body of literature [19].According to this scheme, bidding situations are classified according to four factors: whether bidding is open (as in </p><p>  2. GENERAL BIDDING MODEL</

18、p><p>  Let the decision maker of concern be referred to herein as the subject bidder, and let bids being submitted by the subject bidder’s competitors be referred to as competing bids. Then, for the subject bi

19、dder, the bidding decision can be modelled as an unconstrained optimization problem. This problem is stochastic in that the outcome depends upon the values of two random variables-the lowest competing bid amount, and the

20、 actual cost or value of the object for which the bid is being submitted .If a</p><p>  subject to resource limitations, where </p><p>  M (the decision variable) is the markup ratio, of bid

21、to bidder’s estimated cost Ce</p><p>  C (a random variable) is the ratio of actual to estimated cost,</p><p>  ML (a random variable) is the ratio of the lowest competing bid to the bidder

22、’s cost estimate,</p><p>  Y(C, ML, M) is the outcome on the given decision criterion, ?A(C, M) is the outcome given the bid is accepted (bidder is successful), N is the outcome given the bid is not accepte

23、d (bidder is unsuccessful), and Pr(Win〡M) is the bid acceptance probability. </p><p>  Both the decision space (values of M) and the joint probability sample space (combinations of ML and C) are continuous.

24、</p><p>  In practice, however, these spaces contain finite sets of positive numbers somewhere near one.</p><p>  The distributions of ML and C are generally not known, but must be estimated fro

25、m empirical data. Several terms are expressed as ratios rather than as absolute measures, because the only link among historical data used to generate estimates for the distribution of ML is the cost estimate C,. Further

26、more, dividing through by C, results in relationships that are independent of the cost estimates. While ML and C, are not necessarily independent, empirical studies by Hansmann and Rivett [22] and Kuh</p><p>

27、;  The probability of winning, Pr(Win 1 M), can be modelled as the probability of beating the lowest competing bid, following Hansmann and Rivett [22], Carr and Sandahl [24], Gunter and Swanson [25], and Mercer and Russe

28、ll [26]. </p><p>  Required data are the bidder’s estimated costs for past projects, as well as the lowest competing bids for those projects. </p><p>  Prom this information, probability distrib

29、utions can be estimated. </p><p>  Since Pr(Win 1 M) = Pr(ML > M), the acceptance probability for a bid amount M is equal to 1 - FL(M), and the nonacceptance probability is FL(M), where FL(M) is the cumul

30、ative distribution function of ML evaluated at M. </p><p>  In most of the bidding literature, the N term reflecting the outcome--essentially, the cost-of an unsuccessful bid does not appear. This is likely

31、because the firm ordinarily receives no revenue for losing a contract, and prior costs for preparing the bid are typically sunk. The nonacceptance term is incorporated here to facilitate the ability to accommodate circum

32、stances in which it might be desirable to model nonacceptance outcomes explicitly. Such circumstances would occur when it is possible</p><p>  2.1Multicriteria Model</p><p>  When the above mode

33、l is modified to incorporate multiple criteria, the problem can be expressed in terms of the multiple objectives</p><p>  subject to resource and policy limitations, where m is the number of decision criteri

34、a. This can alternatively be expressed in terms of a, the decision maker’s multiattribute value function</p><p>  for i = 1 to m and subject to resource and policy limitations. The Ai and Ni are defined in t

35、erms of the multiple objective formulation. If the criteria exhibit additive independence, then E[R(C,ML,M)] becomes a weighted sum of the single criterion utility functions evaluated at the Yi(C,M~,M) as in [9]. I n suc

36、h cases, multicriteria methods such as multiattribute value (MAV) analysis, and possibly AHP, can be appropriate for solving the problem, although neither of those is without its own prob</p><p>  3. SUMMARY

37、</p><p>  While numerous works have addressed bidding optimization over the past 40 years, industry practitioners generally continue to ignore those works and, instead, use rules of thumb and other arbitrary

38、 approaches for determining prices [6,19]. This likely results, at least in part, from the fact that existing optimization methods tend to produce unsatisfactory results, as they are incapable of incorporating tradeoffs

39、among multiple criteria. Furthermore, in order to be successfully adopted by indust</p><p>  Based upon actual data, a probability model has been developed to take into consideration major factors which affe

40、ct bidder behavior. Then, based upon that model, a multicriteria optimization approach was presented and evaluated for effectiveness. That approach employs an elicitation procedure (preferably based on pairwise compariso

41、ns) to generate estimates of the weights for the DM’s multicriteria objective function. In the evaluation of the proposed bidding optimization approach, a wide range</p><p>  For a good portion of the prefe

42、rence structures considered, the multicriteria approach, when compared to the profit-based approach, led to substantial or nearly substantial improvement in DM value outcomes. On the other hand, for a few preference stru

43、ctures, there was little improvement when the additional criteria were considered. Essentially, in situations where there was relatively little concern about regret (“money left on the table”) and related criteria, the p

44、roposed multicriteria optimiz</p><p>  An extension of this research would consider the automation of the process, and hence, address a third component for the bidding system: an information processing capab

45、ility which would make it possible to acquire, maintain, and manipulate the data required by bidding optimization. One such system is already operational and is described by Hegazy and Moselhi [15] and Moselhi et al. [17

46、]. In addition, somewhat different architectures have been proposed by Ahmad and Minkarah [14] and Seydel [35], </p><p>  Another extension of this research must address how to modify the proposed system, if

47、 possible, to deal with situations in which bid takers (i.e., potential customers) are awarding contracts according to criteria beyond price (i.e., lowest bid). Increasingly, firms are seeking to implement Deming’s fourt

48、h point: “end the practice of awarding business on price tag alone” [37].Customers are looking at ways to choose trade partners on the basis of product quality, provider reputation, delivery spee</p><p><

49、b>  多準(zhǔn)則支持招標(biāo)</b></p><p>  J.SEYDEL,D.L.OLSON</p><p><b>  摘 要</b></p><p>  利潤(rùn)最大化是一個(gè)領(lǐng)域的重要目標(biāo),其它目標(biāo)也是同樣重要的。本文討論了多個(gè)工程招標(biāo)的標(biāo)準(zhǔn)和各自的目標(biāo),并提出了一個(gè)框架,建議采用一個(gè)兩兩對(duì)比的招標(biāo)以便于產(chǎn)生評(píng)標(biāo)標(biāo)準(zhǔn)和線性轉(zhuǎn)換的

50、過(guò)程,用于計(jì)算投標(biāo)方案的相對(duì)分值。這種混合型的方法是用于說(shuō)明和評(píng)價(jià)過(guò)去采用的一套工程招標(biāo)集。擬定的招投標(biāo)制是當(dāng)工程量被發(fā)現(xiàn)成為大幅度提高預(yù)期利潤(rùn)時(shí)非常重要的解決方案。函數(shù)中確認(rèn)利潤(rùn)減少后,為了使得提高多屬性功能可能實(shí)現(xiàn),進(jìn)行評(píng)估預(yù)期利潤(rùn)損失,(確認(rèn)函數(shù)中的利潤(rùn)減少后評(píng)估預(yù)期利潤(rùn)損失)。</p><p>  關(guān)鍵詞:招標(biāo);施工;多目標(biāo)分析;決策理論</p><p><b>  1引

51、言</b></p><p>  競(jìng)標(biāo)為那些提交建設(shè)項(xiàng)目工程的投標(biāo)單位提供了眾多權(quán)衡。如果投標(biāo)價(jià)相對(duì)較高,那么其被接受的概率就會(huì)相對(duì)較低,從而會(huì)導(dǎo)致:低的預(yù)期收入,低的設(shè)備和人員利用率,以及為競(jìng)爭(zhēng)對(duì)手在本行業(yè)建立他/她的地位的機(jī)會(huì)。然而,這樣的投標(biāo)價(jià)假如被接受的話,將會(huì)帶來(lái)更高的利潤(rùn),不可預(yù)見的機(jī)會(huì)成本所造成的損失也會(huì)減少,并能夠?yàn)榭蛻籼峁└咚降馁|(zhì)量。因此,多重準(zhǔn)則都受到所確定的投標(biāo)金額的影響,而且

52、存在著嚴(yán)重的權(quán)衡取舍需要考慮。本論文中闡述的研究目的是要努力開發(fā)出一種可行的、合用的、以施工為導(dǎo)向的系統(tǒng)來(lái)提供一體化的背景因素和決策標(biāo)準(zhǔn),它由全面可靠的數(shù)據(jù)來(lái)支持。最終目標(biāo)是為建筑行業(yè)的決策者在定價(jià)公司服務(wù)時(shí),提供有效的多重準(zhǔn)則支持。朝著這一目標(biāo),本文描述、演示并評(píng)估了一個(gè)多因素量化程序和多標(biāo)準(zhǔn)優(yōu)化投標(biāo)。</p><p>  許多經(jīng)常面對(duì)這些權(quán)衡的決策者(DMs)應(yīng)該對(duì)本研究有興趣。幾乎所有的公共場(chǎng)所(和大量的住

53、宅)建設(shè)項(xiàng)目涉及競(jìng)爭(zhēng)性招標(biāo),建筑業(yè)是一個(gè)遍布世界各地的重要產(chǎn)業(yè)。例如在美國(guó),根據(jù)聯(lián)邦調(diào)查局對(duì)人口普查的報(bào)告[1]和美國(guó)總統(tǒng)經(jīng)濟(jì)報(bào)告[2],20世紀(jì)80年代美國(guó)的建筑活動(dòng)幾乎占了國(guó)民生產(chǎn)總值的5%。正因?yàn)槿绱?,大量的文獻(xiàn)致力于競(jìng)爭(zhēng)性投標(biāo)各方面的研究,既有從描述性的角度也有從說(shuō)明性的角度[3]。不難理解,競(jìng)爭(zhēng)性投標(biāo)的有效性隊(duì)許多公司的未來(lái)是至關(guān)重要的,假如出價(jià)過(guò)高,就會(huì)降低中標(biāo)的可能性,然而出價(jià)太低,則會(huì)導(dǎo)致財(cái)政失敗。自從弗里德曼[4]于1

54、957年首次開發(fā)了定量招投標(biāo)優(yōu)化模型后,大量的模型已經(jīng)被提出來(lái)支持招投標(biāo)。然而,正如羅特科普夫和哈爾斯塔[3]已指出的,從業(yè)者已較少使用這些模型了。他們認(rèn)為,理論和實(shí)踐之間的差距通常是,考慮到語(yǔ)境的豐富模型的需要與走向現(xiàn)實(shí)主義之間的差距。同樣地,Rothkopf和EngelbrechtWiggans[5]已經(jīng)指出,有缺陷的模型會(huì)有錯(cuò)誤的結(jié)果。那么理所當(dāng)然地,只為追求利潤(rùn)最大化的模型將很難被實(shí)際投標(biāo)人所接受,他們是典型的多重標(biāo)準(zhǔn)關(guān)注者。&

55、lt;/p><p>  1.1招標(biāo)的多準(zhǔn)則性質(zhì)</p><p>  招標(biāo)中涉及的多重準(zhǔn)則已經(jīng)過(guò)了數(shù)十年的討論。在第一個(gè)已知的正式優(yōu)化招標(biāo)工作中,弗里德曼指出,利潤(rùn)最大化的上市目標(biāo),投資回報(bào)最大化,預(yù)期損失最小化,競(jìng)爭(zhēng)對(duì)手利潤(rùn)最小化,連續(xù)性經(jīng)營(yíng)最大化,使多重招標(biāo)準(zhǔn)則得以存在[4]。鮑也指出了這些多重目標(biāo)[6]。果不其然,他在對(duì)126家建筑公司的調(diào)查中發(fā)現(xiàn),利潤(rùn)最大化雖然決不是唯一重要的目標(biāo),但卻

56、是招標(biāo)中最常使用的目標(biāo)??栔赋隽送顿Y和生產(chǎn)標(biāo)準(zhǔn)回報(bào)率,雖然利潤(rùn)最大化還是納入他模型的唯一目標(biāo)[7]。在之后的研究中,卡爾將機(jī)會(huì)成本納入了以利潤(rùn)為基礎(chǔ)的招標(biāo)方法[8]。最后,盡管在文獻(xiàn)中沒有明確提及,中標(biāo)是許多承包商(包括作者和作者所見過(guò)的公司)默認(rèn)的目標(biāo)。這個(gè)目標(biāo)也許能或也許不能代表其他目標(biāo)的集合,如資源利用率和現(xiàn)金流量的維持,但無(wú)論如何不能也不應(yīng)該在實(shí)際招投標(biāo)實(shí)踐中忽視它。</p><p>  然而,多準(zhǔn)則分

57、析在競(jìng)爭(zhēng)性投標(biāo)中的實(shí)際應(yīng)用是有限的。Engelbrecht-Wiggans開發(fā)了一個(gè)描述性的模型,分析了利潤(rùn)最大化和兩種損失形式損失最小化的同步發(fā)生[9]。第一個(gè)多準(zhǔn)則方法在競(jìng)標(biāo)中的一般規(guī)定性應(yīng)用被發(fā)現(xiàn)?;诙鄬傩孕в美碚?MAUT),艾哈曼德就是否決定投標(biāo)一個(gè)項(xiàng)目,并且之后應(yīng)該使用什么樣的標(biāo)注提出了二級(jí)辦法。不幸的是,效用函數(shù)的啟發(fā)作用,尤其是多屬性效用函數(shù),對(duì)DMs來(lái)說(shuō)是復(fù)雜且耗時(shí)的。由賽德爾和奧爾森提出的確定最佳標(biāo)注的方法是基于薩

58、蒂[13]引進(jìn)的層次分析法(AHP)的一部分。計(jì)算得到簡(jiǎn)化,DM的負(fù)荷也減少了,盡管比起艾哈邁德的多屬性效用方法,該方法依靠的是更嚴(yán)格的假設(shè)。隨后,艾哈邁德,Minkarah[14]和Hegazy等[15-17]將他們這些行之有效的多準(zhǔn)則招標(biāo)方法的各個(gè)方面實(shí)施在計(jì)算機(jī)軟件中。</p><p><b>  1.2審議范圍</b></p><p>  除了上述研究表明,已

59、經(jīng)有其他不少研究應(yīng)用于競(jìng)爭(zhēng)性招標(biāo),如En--gelbrecht-Wiggans的廣泛調(diào)查論[18]。為了幫助現(xiàn)有的招投標(biāo)分析,國(guó)王和得瑟制定了通過(guò)總結(jié)和分類文學(xué)本身解決辦法的計(jì)劃[19]。根據(jù)這個(gè)計(jì)劃,招標(biāo)按照四個(gè)因素進(jìn)行分類:公開招標(biāo)(例如房地產(chǎn)拍賣)或議標(biāo)(密閉招標(biāo))、招標(biāo)選擇(投標(biāo)價(jià)高,低價(jià)中標(biāo)或者其他)、非價(jià)格競(jìng)爭(zhēng)的存在(所有投標(biāo)人滿足同樣的條件,或提出替代產(chǎn)品),并且該項(xiàng)目的確定值稱為買入后價(jià)值。研究的重點(diǎn)是建筑招投標(biāo)活動(dòng),是

60、在其中使用密封招標(biāo),低價(jià)中標(biāo)價(jià)格已經(jīng)選定,所有投標(biāo)人達(dá)到同樣的標(biāo)準(zhǔn),項(xiàng)目成本是確定的。(要注意的是,盡管越來(lái)越多除價(jià)格以外的因素被合同授予,合同授予的最低投標(biāo)人仍沒被淘汰。例如投標(biāo)人的資格預(yù)審和嚴(yán)格規(guī)范,尤其是在公共建設(shè)工程,歷來(lái)?yè)?dān)任代表非價(jià)格屬性。本質(zhì)上,這些標(biāo)準(zhǔn)代表限制,不僅僅是招標(biāo)過(guò)程中的8s目標(biāo)。雖然有被納入作為實(shí)現(xiàn)這些諸多好處的目標(biāo)的其他標(biāo)準(zhǔn),這樣做是對(duì)未來(lái)研究的保留。)本研究的目的的提供一個(gè)由Seydel和Olson發(fā)展的擴(kuò)

61、展方法,通過(guò)集合到一個(gè)通用的多框架,并通過(guò)招標(biāo)和評(píng)標(biāo)的框架說(shuō)明實(shí)際施工招標(biāo)使用的數(shù)據(jù)。注意的是,招標(biāo)</p><p><b>  2一般招標(biāo)模型</b></p><p>  在此處讓決策者關(guān)注的是統(tǒng)稱為專業(yè)招標(biāo)者,并讓專業(yè)招標(biāo)者的競(jìng)爭(zhēng)對(duì)手提交投標(biāo)價(jià)被稱為競(jìng)爭(zhēng)性招標(biāo)。然后,作為專業(yè)招標(biāo)者,招標(biāo)決策可以作為一個(gè)無(wú)約束的優(yōu)化問題來(lái)建模。這個(gè)問題是隨機(jī)的,最低投標(biāo)量的競(jìng)爭(zhēng)的結(jié)

62、果取決于兩個(gè)隨機(jī)變量的值,和正在提交投標(biāo)的實(shí)際成本或價(jià)值規(guī)定的對(duì)象。如果用單一的標(biāo)準(zhǔn)考慮,其目標(biāo)是優(yōu)化招投標(biāo)過(guò)程的結(jié)果。基于弗里德曼的工作[4],優(yōu)化的典型方法是尋求預(yù)期的優(yōu)化結(jié)果(例如利潤(rùn))。一般低價(jià)中標(biāo)的情況表明,目的是確定投標(biāo)比率M,以</p><p><b>  受資源限制,在這里</b></p><p>  M是(決策變量)招標(biāo)對(duì)投標(biāo)人成本估計(jì)Ce標(biāo)注比率;

63、</p><p>  C是(隨機(jī)變量)實(shí)際估計(jì)成本比率;</p><p>  ML是(隨機(jī)變量)競(jìng)爭(zhēng)性最低的招標(biāo)對(duì)投標(biāo)人成本估計(jì)比率;</p><p>  Y(C, ML, M) 是在給定決策標(biāo)準(zhǔn)上得出的結(jié)果;</p><p>  A(C, M)是給出可接受的投標(biāo)人的結(jié)果(中標(biāo));</p><p>  N是不可接受投標(biāo)

64、人的結(jié)果(未中標(biāo));</p><p>  Pr(Win〡M)是中標(biāo)的概率.</p><p>  決策空間(M的價(jià)值)和可能聯(lián)合的試樣空間(ML和C的結(jié)合)都是連續(xù)的。然而在實(shí)踐上,這些空間的地方附近包含了有限正數(shù)集合。</p><p>  ML和C的分布一般是未知的,必須從經(jīng)驗(yàn)數(shù)據(jù)里估計(jì)。幾個(gè)作為比率的條件不是絕對(duì)的,因?yàn)橛糜谏蒑L分布的歷史數(shù)據(jù)的唯一聯(lián)系時(shí)成本估

65、計(jì)Ce。此外,通過(guò)被Ce除,導(dǎo)致了獨(dú)立的成本估計(jì)的聯(lián)系。Hansmann and Rivett [22] 和 Kuhlmann 和Johnson [23]實(shí)證研究ML和C沒有必要的聯(lián)系。因此,相關(guān)數(shù)據(jù)應(yīng)該在特設(shè)及基礎(chǔ)上分析,在下一節(jié)會(huì)作簡(jiǎn)要討論,以確定此類的獨(dú)立程度。</p><p>  中標(biāo)的概率Pr(Win〡M),可以作為擊敗低價(jià)中標(biāo)的模型,Hansmann 和 Ri--vett [22],Carr 和 Sa

66、ndahl [24],Gunter 和 Swanson [25], and Mercer 和Rus--sell [26]。</p><p>  所需的數(shù)據(jù)是招標(biāo)人對(duì)先前項(xiàng)目的成本估計(jì),以及這些項(xiàng)目的最低競(jìng)爭(zhēng)投標(biāo)。</p><p>  從這些信息,可以估計(jì)概率分布。</p><p>  因Pr(Win〡M)= Pr(ML > M),投標(biāo)價(jià)M接受的概率等同于1-F

67、L(M),不被接受的概率是FL(M),在這里FL(M)是ML評(píng)估M的累積分布函數(shù)。</p><p>  在大多數(shù)投標(biāo)文獻(xiàn)中,沒有出現(xiàn)反映不成功投標(biāo)的結(jié)果(本質(zhì)上是成本)的N項(xiàng)。這很可能是因?yàn)樵摴就ǔ2粫?huì)因失去合同而獲得收入,而且準(zhǔn)備投標(biāo)的前期成本通常會(huì)下降。此處引入不接受項(xiàng)是為了便于適應(yīng)可能需要明確地對(duì)不接受結(jié)果進(jìn)行建模的情況。當(dāng)有可能估計(jì)不成功的投標(biāo)結(jié)果時(shí),就會(huì)出現(xiàn)這種情況,包括但不限于次優(yōu)(即計(jì)劃B )備選

68、方案;與替換在緩慢時(shí)期離開公司的關(guān)鍵人員有關(guān)的費(fèi)用;搬遷費(fèi)用;以及解散公司的費(fèi)用。為了更容易地遵循要演示的過(guò)程,除了在下一節(jié)中包括在通用多標(biāo)準(zhǔn)模型中之外,在此不明確考慮這些成本。也就是說(shuō),為了演示的目的,假設(shè)N具有零值。盡管如此,一些不接受費(fèi)用,例如與關(guān)鍵人員損失有關(guān)的費(fèi)用,雖然不是通過(guò)同時(shí)考慮多項(xiàng)標(biāo)準(zhǔn)來(lái)處理,如下文所述。當(dāng)然,未來(lái)的研究是有必要的,在識(shí)別和建模不接受的結(jié)果,因?yàn)樗鼈兇_實(shí)存在,投標(biāo)人知道它們,但招標(biāo)優(yōu)化文獻(xiàn)一般忽略它們。

69、</p><p>  2.1多準(zhǔn)則模型當(dāng)上述模型被修改為包含多個(gè)標(biāo)準(zhǔn)時(shí),問題可以用多個(gè)目標(biāo)來(lái)表示</p><p>  受資源和策略限制,其中m是決策標(biāo)準(zhǔn)的數(shù)量。這也可以用決策者的多屬性值函數(shù)來(lái)表示</p><p>  i = 1 to m,并受到資源和政策的限制。A的i次和N的i次從多準(zhǔn)則目標(biāo)的制定中被定義。如果附加的標(biāo)準(zhǔn)表現(xiàn)獨(dú)立性,那么E[R(C,ML,M)]

70、在評(píng)定Yi(C,M~,M)時(shí)成為一個(gè)單一的標(biāo)準(zhǔn)實(shí)用程序函數(shù)的加權(quán)綜合,比如在公式[9]中。在這種情況下,多準(zhǔn)則方法比如多準(zhǔn)則價(jià)值(MAV)分析和可能的層次分析法,可以成為合適的解決問題的方法,盡管這些方法并不是沒有自身的問題。</p><p><b>  3小結(jié)</b></p><p>  在過(guò)去的40年,雖然許多的著作已經(jīng)處理了投標(biāo)優(yōu)化的問題,但業(yè)界普遍繼續(xù)無(wú)視這些

71、著作,相反,他們使用經(jīng)驗(yàn)規(guī)則或其他任意的方法確定價(jià)格[6,19]。這至少部分可能是由于現(xiàn)有的優(yōu)化方法無(wú)法在多個(gè)標(biāo)準(zhǔn)中納入權(quán)衡,往往產(chǎn)生無(wú)法令人滿意的結(jié)果。此外,為了能成功地被業(yè)界采用,投標(biāo)優(yōu)化,不管多準(zhǔn)則與否,都必須作為系統(tǒng)的一部分。這樣的一個(gè)系統(tǒng)必然是由至少兩部分組成的:在評(píng)估各種投標(biāo)方案中所需的概率信息生成的分析組件和在給出所涉及到的權(quán)衡中確定哪一個(gè)是最好的優(yōu)化組件。盡管分析組件已在本文中簡(jiǎn)要討論過(guò),在其他工作中也詳細(xì)探討過(guò)[5,2

72、4,32],優(yōu)化組件是本文的重點(diǎn)。它的成功取決于分析組件始于保持良好的記錄,之后實(shí)施健全統(tǒng)計(jì)程序的可靠性。</p><p>  該系統(tǒng)的觀點(diǎn)指導(dǎo)著本文的研究,討論已在這里列出。基于實(shí)際數(shù)據(jù),一種概率模型已經(jīng)被開發(fā)出來(lái),用來(lái)考慮影響投標(biāo)人行為的主要因素。然后,基于該模型,多準(zhǔn)則的優(yōu)化方法被提出并對(duì)其有效性進(jìn)行評(píng)估。這種方法采用非啟發(fā)式程序(最好是在兩兩比較的基礎(chǔ)上)為DM的多準(zhǔn)則目標(biāo)函數(shù)生成權(quán)重估計(jì)。在提出的投標(biāo)優(yōu)

73、化方法評(píng)估中,考慮到了廣泛的偏好結(jié)構(gòu)(正如MAV函數(shù)所表明的)。對(duì)所考慮的很大一部分的偏好結(jié)構(gòu)來(lái)說(shuō),當(dāng)與以利潤(rùn)為基礎(chǔ)的方法比較時(shí),多準(zhǔn)則方法在DM價(jià)值結(jié)果中會(huì)產(chǎn)生實(shí)質(zhì)性的或近乎實(shí)質(zhì)性的改善。另一方面,對(duì)一些偏好結(jié)構(gòu)來(lái)說(shuō),當(dāng)考慮到附加標(biāo)準(zhǔn)時(shí),很少有改善。從本質(zhì)上說(shuō),關(guān)注優(yōu)化及相關(guān)標(biāo)準(zhǔn)的情況不多(“錢放在桌上”),多準(zhǔn)則優(yōu)化方法證明是有效的。</p><p>  研究延伸的一個(gè)方面是過(guò)程的自動(dòng)化,因此,對(duì)招投標(biāo)系統(tǒng)的

74、三部分確定:可能獲取的信息處理能力、維護(hù)、通過(guò)招標(biāo)優(yōu)化操作必要的數(shù)據(jù)。一個(gè)這樣的系統(tǒng)已經(jīng)開始運(yùn)行,由Hegazy、Moselhi[15]和Moselhi[17]等進(jìn)行描述。此外,被Ahmad 和Minkarah [14]、Seydel [35]、Ward和Chapman[36]建議用有些不同的體系結(jié)構(gòu)用于提供招標(biāo)信息系統(tǒng)的一般準(zhǔn)則。其他擴(kuò)展的研究包括一個(gè)更詳細(xì)的切實(shí)考慮承包商的標(biāo)準(zhǔn),以及研究通過(guò)成對(duì)比較標(biāo)準(zhǔn)權(quán)重的確定和通過(guò)其他程序的決定

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論