版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 中文5454字 </p><p> 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p> 學(xué)院(系): 機(jī)械工程學(xué)院 </p><p> 專 業(yè): 機(jī)械設(shè)計(jì)制造及自動(dòng)化 </p><p> 姓 名:
2、 </p><p> 學(xué) 號(hào): </p><p> 外文出處:Computer Aided Surgery, November 2001</p><p> 附 件: 1.外文資料翻譯譯文;2.外文原文。 </p><p> 注:請(qǐng)
3、將該封面與附件裝訂成冊(cè)。</p><p> 附件1:外文資料翻譯譯文</p><p> 外科手術(shù)機(jī)器人的現(xiàn)狀:臨床應(yīng)用和技術(shù)挑戰(zhàn)</p><p><b> 摘要</b></p><p> 從第一個(gè)用于外科手術(shù)的機(jī)器人被記錄以來,15年已經(jīng)過去了。而醫(yī)用機(jī)器人還沒有出現(xiàn)大規(guī)模使用的情況,盡管在提高醫(yī)用能力和手術(shù)精度
4、方面還有很大的潛力,但臨床使用的機(jī)器人還比較少。在這個(gè)調(diào)查報(bào)告中,我們以對(duì)醫(yī)用機(jī)器人的發(fā)展史的簡(jiǎn)要回顧為開端,接下來是對(duì)機(jī)器人在臨床使用情況的一個(gè)概述,然后是對(duì)于臨床應(yīng)用的討論,這里包括了神經(jīng)外科,整形外科,泌尿科,面部整形外科,放射外科,眼科和心臟外科手術(shù)。我們將關(guān)于醫(yī)用機(jī)器人的技術(shù)挑戰(zhàn)和研究領(lǐng)域總結(jié)成一張表, 包括系統(tǒng)構(gòu)建,軟件設(shè)計(jì),機(jī)構(gòu)的設(shè)計(jì),圖像系統(tǒng),使用者接口和安全協(xié)題等幾部分。</p><p><
5、;b> 關(guān)鍵字</b></p><p> 醫(yī)用機(jī)器人,回顧文章,技術(shù)挑戰(zhàn),神經(jīng)外科,整形外科,泌尿科,面部整形外科放射外科 ,眼科,心臟外科</p><p><b> 1.0 介紹</b></p><p> 醫(yī)用機(jī)器人在提高外科醫(yī)生的手術(shù)能力和手術(shù)精度方面存在著極大的潛力,而我們對(duì)于醫(yī)用機(jī)器人的應(yīng)用僅僅處于起步階段
6、,關(guān)于它的實(shí)用性、安全性、費(fèi)用等問題也擺在了我們的面前,盡管有許多商業(yè)公司賣出了一些醫(yī)用機(jī)器人,但總的裝備數(shù)量還很少,市場(chǎng)仍然保持著緩慢增長(zhǎng)的趨勢(shì)。不象工業(yè)機(jī)器人領(lǐng)域,在70年代到80年代增長(zhǎng)迅速,醫(yī)用機(jī)器人還沒有達(dá)到大的使用規(guī)模。然而,可以堅(jiān)信,醫(yī)用機(jī)器人的在醫(yī)療領(lǐng)域的優(yōu)勢(shì)將明顯顯現(xiàn)出來,這將使它在醫(yī)療上的使用持續(xù)增加。</p><p> 依照美國(guó)機(jī)器人學(xué)會(huì)的定義:一個(gè)機(jī)器人就是“一種自動(dòng)的位置可控的具有可編
7、程能力的多功能機(jī)械手,這種機(jī)械手有幾個(gè)關(guān)節(jié),它能夠借助于可編程程序操作。成搬運(yùn)物料、零件工具或特定裝置,以執(zhí)行各種任務(wù)?!?一說到機(jī)器人我們也許會(huì)聯(lián)想到電影“星球大戰(zhàn)”中的R2D2,在這篇論文中我們將要遵守上面的定義。通過各個(gè)關(guān)節(jié)交替連接,機(jī)器人構(gòu)成了一個(gè)緊密聯(lián)系的鏈,這使機(jī)器人能夠從一環(huán)到另一環(huán)完成各種相關(guān)的運(yùn)動(dòng)[1]。機(jī)械手位于整個(gè)環(huán)節(jié)的末端,通常作為末端執(zhí)行器,機(jī)器人被一個(gè)電腦系統(tǒng)控制,電腦系統(tǒng)控制末端執(zhí)行器到達(dá)它的運(yùn)動(dòng)空間內(nèi)的相
8、應(yīng)位置點(diǎn)和方向。</p><p> 這篇調(diào)察文章將點(diǎn)明醫(yī)療機(jī)器人的現(xiàn)狀通過幾個(gè)臨床的實(shí)例,在這篇文章中,我們著重講述機(jī)器人在外科手術(shù)中所扮演的角色,外科機(jī)器人系統(tǒng)并不意味著會(huì)代替醫(yī)生,而是為了加強(qiáng)醫(yī)師的手術(shù)能力,也有其他方面的醫(yī)用機(jī)器人,如康復(fù)機(jī)器人和縮微機(jī)器人,但在這里我們就不在贅述了。這篇文章并不是包羅萬(wàn)象的,而是對(duì)于這個(gè)領(lǐng)域作了一個(gè)概述,而將論述重點(diǎn)放在醫(yī)療機(jī)器人的歷史的發(fā)展和現(xiàn)代工作上。</p&g
9、t;<p> 關(guān)于醫(yī)用機(jī)器人手術(shù)過程的其他幾篇文章也已經(jīng)被完成了,如:Davies[2]講述了醫(yī)療機(jī)器人的發(fā)展史并對(duì)研究者研究出的機(jī)器人按類型進(jìn)行了分類,Taylor[3]分析了醫(yī)療機(jī)器人的分類方法并發(fā)表了自己的分類方法,Troccaz[4]講述了機(jī)器人的發(fā)展史,描述了被動(dòng)的、半自動(dòng)的、全自動(dòng)的機(jī)器人系統(tǒng),Howe[5]介紹了在整形外科、神經(jīng)外科和其他手術(shù)中圖像處理的運(yùn)用,特殊的觀點(diǎn)也是存在的,例如Caddedu[6]的
10、泌尿科機(jī)器人。</p><p> 本論文是按下面的次序進(jìn)行的:第二段是簡(jiǎn)要的歷史概述,接下來第三段是臨床應(yīng)用情況的表格,表格中的應(yīng)用情況在后面進(jìn)行了敘述,第四段是研究情況和技術(shù)挑戰(zhàn),第五段給出了結(jié)論。,</p><p> 2.0 歷史概述</p><p> 醫(yī)用機(jī)器人是一個(gè)相對(duì)年輕的領(lǐng)域,醫(yī)療機(jī)器人的使用的第一個(gè)記錄出現(xiàn)在1985年[7],在這個(gè)手術(shù)中機(jī)器
11、人僅是一個(gè)簡(jiǎn)單的定位裝置,指引探針為大腦進(jìn)行活體檢查,一個(gè) 52 歲的男人被放在一張 CT 掃描儀上,目標(biāo)在 CT 圖像上被識(shí)別,并且機(jī)器人指引一個(gè)導(dǎo)向的管子,一根探針將要從管子中插入,不完美的是被使用的機(jī)器人是PUMA560工業(yè)機(jī)器人,考慮到機(jī)器人手術(shù)在接近人的時(shí)候的安全問題,這個(gè)項(xiàng)目沒有繼續(xù)下去。</p><p> 不久之后,歐洲、亞洲、美國(guó)的研究小組也開始對(duì)機(jī)器人在醫(yī)療方面的應(yīng)用進(jìn)行調(diào)查。在歐洲,倫敦Im
12、perial學(xué)院的一個(gè)研究小組在Davies的指導(dǎo)下開始開發(fā)在前列腺方面的機(jī)器人[8], 法國(guó)的Grenoble大學(xué)的醫(yī)院的Benabid, Lavallee和他們的同事也開始在神經(jīng)外科手術(shù),例如活體檢視方面的研究,在亞洲,東京大學(xué)的Dohi發(fā)展了一個(gè)CT引導(dǎo)的探針插入操作者的原型[10].在美國(guó),泰勒和在IBM的同事也開始開發(fā)后來名為ROBODOC的系統(tǒng)[11]。</p><p> 最近,有幾家商業(yè)公司和一些
13、實(shí)驗(yàn)室在醫(yī)療機(jī)器人領(lǐng)域展開了積極的工作,近期的努力已經(jīng)制造出了商業(yè)產(chǎn)品,例如Grenoble大學(xué)的醫(yī)院研制的合成外科機(jī)器人系統(tǒng)NeuroMate。</p><p> 3.0 臨床應(yīng)用</p><p> 在醫(yī)學(xué)上有幾種方式區(qū)別機(jī)器人的使用,例如Taylor發(fā)明的區(qū)別方法就是通過機(jī)器人在醫(yī)療手術(shù)中所扮演的角色來區(qū)分,Taylor強(qiáng)調(diào)機(jī)器人作為與醫(yī)師協(xié)調(diào)合作的工具實(shí)現(xiàn)了對(duì)外科手術(shù)的干預(yù),
14、他把這個(gè)系統(tǒng)分為五個(gè)層次:</p><p><b> 1.器械輔助系統(tǒng)</b></p><p><b> 2.手術(shù)通訊系統(tǒng)</b></p><p><b> 3.導(dǎo)向輔助系統(tǒng)</b></p><p><b> 4.精確定位系統(tǒng)</b></p&
15、gt;<p><b> 5.信息處理系統(tǒng)</b></p><p> 盡管這種分類方法被用作為技術(shù)指導(dǎo),在這篇論文中,我們選擇根據(jù)臨床應(yīng)用情況來對(duì)機(jī)器人進(jìn)行劃分,按應(yīng)用情況進(jìn)行劃分對(duì)使用者更有吸引力,表1是關(guān)于醫(yī)療機(jī)器人已經(jīng)應(yīng)用的7個(gè)領(lǐng)域的一張表,這張表并不意味著什么,但從這個(gè)領(lǐng)域中選擇的有代表性的研究小組和投資機(jī)構(gòu)給讀者關(guān)于這個(gè)領(lǐng)域一個(gè)概括的論述,“研究對(duì)象”一欄主要涉及是
16、以人為實(shí)驗(yàn)對(duì)象,還是以動(dòng)物、尸體或其他物體為研究對(duì)象。</p><p> 表1:臨床領(lǐng)域的應(yīng)用有代表性的機(jī)器人開發(fā)</p><p> 3.1 神經(jīng)外科</p><p> 在歷史回顧中,這部分已經(jīng)被講述過,神經(jīng)外科是機(jī)器人最先應(yīng)得到臨床應(yīng)用的,仍然是當(dāng)今比較令人感興趣的科研課題,神經(jīng)外科立體手術(shù)機(jī)器人的應(yīng)用需要空間位置正確率和精確度,以保證使不必要傷害減少到
17、最低的情況下,達(dá)到手術(shù)的目的。這個(gè)階段有三個(gè)有代表性的機(jī)器人系統(tǒng):</p><p> 瑞士Lausanne大學(xué)的Minerva系統(tǒng)</p><p> 2. 美國(guó)集成醫(yī)療系統(tǒng)的NeuroMate系統(tǒng)</p><p> 日本的Dohi和同事開發(fā)的MRI并立機(jī)器人系統(tǒng)</p><p><b> Minerva</b>
18、</p><p> 醫(yī)用外科機(jī)器人Minerva系統(tǒng)是為實(shí)現(xiàn)精確的探針定位而研制的最早的機(jī)器人系統(tǒng)之一,它是為了立體的腦組織手術(shù)而進(jìn)行設(shè)計(jì)的,它被限于CT掃描時(shí)工作,它被設(shè)計(jì)的目的是保證在連續(xù)的 CT 掃描時(shí)外科醫(yī)生能夠跟蹤工具的位置。</p><p><b> NeuroMate</b></p><p> The NeuroMate是一
19、個(gè)用于外科手術(shù)的六自由度機(jī)器人,它的開發(fā)工作是由法國(guó)Grenoble大學(xué)醫(yī)院的Benabid, Lavallee,和他們的同事完成的,為了滿足立體手術(shù)的需要和解決對(duì)安全問題的關(guān)注,原系統(tǒng)接下來又被二次開發(fā)。</p><p> 3.1.3 MRI compatible robot</p><p> 這個(gè)機(jī)器人很好的滿足了定位誤差小于3.3毫米的設(shè)計(jì)要求,該單元足夠小巧,最大高度49
20、1毫米,適合于直徑600毫米的MRI工作臺(tái)。3</p><p> 3.2 整形外科</p><p> 整形外科也較早的使用了機(jī)器人,在1992年它最先被用于臀部的修復(fù)手術(shù)。它的代表是ROBODOC系統(tǒng)。</p><p> 3.3 泌尿科</p><p> 主要用于泌尿系統(tǒng)的手術(shù),主要代表是Imperial學(xué)院1998年設(shè)計(jì)
21、的機(jī)器人。</p><p> 機(jī)器人還在眼科,面部整形,放射療法,心臟外科等方面得到了十分廣泛的應(yīng)用,這些在前面的列表中都已做了具體的說明。(注:由于本文過長(zhǎng),所以我將與課題無(wú)緊密聯(lián)系的幾種機(jī)器人的介紹和所有的圖片信息刪去了,特此說明)</p><p> 4.0 技術(shù)挑戰(zhàn)/研究領(lǐng)域</p><p> 雖然許多的不同臨床的領(lǐng)域正在被探究如第 3 節(jié)所記錄,那
22、醫(yī)療機(jī)器人領(lǐng)域的研究還在它的幼年時(shí)期,而且我們剛好在這一個(gè)時(shí)代的開始。只有很少一些商業(yè)公司存在,而且醫(yī)療機(jī)器人每年的銷售數(shù)字還比較少,部份的理由是醫(yī)學(xué)的環(huán)境是非常復(fù)雜的和新技術(shù)的介紹很困難。 除此之外,一個(gè)醫(yī)療機(jī)器人工程的完成需要工程師和臨床醫(yī)生之間有良好的合作關(guān)系,但這種關(guān)系是不容易建立的。</p><p> 醫(yī)療機(jī)器人研究的技術(shù)挑戰(zhàn)和研究區(qū)域總體上說包括系統(tǒng)部件的開發(fā)和系統(tǒng)開發(fā),對(duì)于系統(tǒng)部件,研究主要包括以
23、下幾個(gè)方面:</p><p><b> 系統(tǒng)的構(gòu)建</b></p><p><b> 軟件的設(shè)計(jì)</b></p><p><b> 機(jī)構(gòu)設(shè)計(jì)</b></p><p><b> 圖象接口設(shè)計(jì)</b></p><p><b
24、> 操作界面</b></p><p><b> 安全問題</b></p><p> ?。?/24/2002 機(jī)器人調(diào)查: Cleary/ Nguyen 第 21頁(yè))</p><p> 對(duì)于醫(yī)療機(jī)器人系統(tǒng)來說,測(cè)試平臺(tái)的開發(fā)是推動(dòng)該領(lǐng)域發(fā)展的關(guān)鍵,這些測(cè)試平臺(tái)還可以用來加強(qiáng)工程師和醫(yī)師之間的交流,然而至少在美國(guó)這些平臺(tái)是很
25、難得到開發(fā)資金的,像NIH和NSF等政府資金管理機(jī)構(gòu)很難為這些項(xiàng)目提供資金就如同它們很少調(diào)整向基礎(chǔ)研究提供資金一樣,而更不用說應(yīng)用研究和開發(fā)了.</p><p> 制造業(yè)者也不是很感興趣,因?yàn)獒t(yī)用機(jī)器人的投資的環(huán)境和投資回報(bào)還不確定,</p><p> 盡管一些系統(tǒng)已經(jīng)被食品藥物管理局核準(zhǔn),醫(yī)用機(jī)器人的規(guī)范劃問題還沒有完全被探究,這些因素仍然阻礙這個(gè)領(lǐng)域的發(fā)展,在下面的文章中,我將對(duì)上
26、面列出的六個(gè)系統(tǒng)組成部分進(jìn)行簡(jiǎn)要的論述。</p><p> 4.1 系統(tǒng)的構(gòu)建</p><p> 隨著醫(yī)用機(jī)器人這個(gè)領(lǐng)域的不斷發(fā)展,隨著開發(fā)原形系統(tǒng)的費(fèi)用和困難的降低,構(gòu)建一個(gè)機(jī)器人系統(tǒng)是一個(gè)可行的步驟,正如Taylor在Steady-Hand機(jī)器人的設(shè)計(jì)中所強(qiáng)調(diào)的那樣,系統(tǒng)構(gòu)建應(yīng)該強(qiáng)調(diào)模塊化,尤其是機(jī)械設(shè)計(jì),電控系統(tǒng),軟件系統(tǒng)的模塊化,模塊化的設(shè)計(jì)方法在Stoianovici[3
27、7]的泌尿科機(jī)器人實(shí)驗(yàn)室也被提出過,在這里為了一些精密的手術(shù),許多機(jī)械模塊被開發(fā)。</p><p><b> 軟件設(shè)計(jì)</b></p><p> 可能包括一個(gè)實(shí)時(shí)控制系統(tǒng)的用于醫(yī)療機(jī)器人的軟件環(huán)境的發(fā)展是一個(gè)重要的挑戰(zhàn),許多開發(fā)醫(yī)用機(jī)器人系統(tǒng)的研究者市場(chǎng)上銷售的軟件包作為他們開發(fā)的軟件的基礎(chǔ),這種做法也許并不適合醫(yī)療機(jī)器人的開發(fā)。然而這些軟件包低廉的價(jià)格和廣泛的通
28、用性使它們極有吸引力,并且它們的很多程序(例如看門狗定時(shí)器,支持系統(tǒng), 和錯(cuò)誤恢復(fù)程序)使系統(tǒng)更加穩(wěn)定,但是可以堅(jiān)信隨著上面提到的系統(tǒng)的構(gòu)建,一個(gè)適合于機(jī)械環(huán)境的健康的軟件環(huán)境將會(huì)做出實(shí)質(zhì)性的貢獻(xiàn),然而對(duì)于不同的外科手術(shù),這些軟件環(huán)境仍然要根據(jù)需要進(jìn)行修改,研究者應(yīng)該對(duì)于他們未來的工作有初步的認(rèn)識(shí)。</p><p><b> 機(jī)構(gòu)設(shè)計(jì)</b></p><p> 除
29、了好的軟件設(shè)計(jì),精巧的機(jī)構(gòu)設(shè)計(jì)也會(huì)提高機(jī)器人在手術(shù)過程中的實(shí)用性,正如上文中的歷史回顧描述的那樣,第一個(gè)被記錄的醫(yī)療機(jī)器人運(yùn)用是對(duì)腦組織進(jìn)行手術(shù),使用的是工業(yè)機(jī)器人PUMA,當(dāng)一些研究者提起工業(yè)機(jī)器人用于醫(yī)療手術(shù)時(shí),作者和其他研究者都認(rèn)為專用的機(jī)構(gòu)設(shè)計(jì)將更有利于它的應(yīng)用(見2/24/2002 機(jī)器人調(diào)查: Cleary/Nguyen 第22頁(yè))。尤其是,這些設(shè)計(jì)應(yīng)是更安全的,因?yàn)樗菫獒t(yī)療環(huán)境專門設(shè)計(jì)并且滿足不同醫(yī)療手術(shù)的需要,在本文中
30、新穎的機(jī)構(gòu)設(shè)計(jì)的代表包括Probot [18]和Steady-Hand robot [22],然而我們也應(yīng)該承認(rèn),專用機(jī)構(gòu)的設(shè)計(jì)將不會(huì)達(dá)到通用機(jī)構(gòu)那樣的經(jīng)濟(jì)效益,另一個(gè)解決方法是設(shè)計(jì)具有專用末端執(zhí)行器通用機(jī)構(gòu)。</p><p> 4.4 圖象接口系統(tǒng)</p><p> 隨著圖象引導(dǎo)手段的逐漸流行,要求機(jī)器人在各種圖象形式限制的范圍內(nèi),例如:CT和MRI,能夠正常工作,而這些系統(tǒng)大部
31、分在醫(yī)生的直接控制之下。在未來,系統(tǒng)將會(huì)將加強(qiáng)同這些圖象形式的聯(lián)系。本文也對(duì)一些系統(tǒng)進(jìn)行了介紹,如以MRI為接口的Masamune系統(tǒng) [15]和與CT融合的Minerva 系統(tǒng)[13]。</p><p><b> 操作界面</b></p><p> 一個(gè)在所有的醫(yī)用機(jī)器人系統(tǒng)的發(fā)展中發(fā)生的問題就是操作界面的問題,作為醫(yī)用機(jī)器人什么樣的操作界面是合適的呢?機(jī)器人是
32、應(yīng)該被給一個(gè)程序命令還是一個(gè)聲音然后才執(zhí)行它的任務(wù)呢?用手柄或用鍵盤作為媒介哪個(gè)合適?或者醫(yī)生直接操作機(jī)器人工具更合適嗎?力的反饋需要高精度的操作界面嗎?這就是機(jī)器人組織未來需要調(diào)查的所有問題,根據(jù)機(jī)器人設(shè)計(jì)所要求完成的任務(wù)不同,答案也會(huì)有所差別,如果醫(yī)生認(rèn)為手術(shù)是在控制之中,至少最初看起來醫(yī)療機(jī)器人是可以被醫(yī)生更多的接受的。</p><p><b> 安全問題</b></p>
33、<p> 安全是機(jī)器人醫(yī)療系統(tǒng)中最受關(guān)注的問題,這也是推動(dòng)機(jī)器人發(fā)展必須被提及的一個(gè)領(lǐng)域,安全問題已經(jīng)被Davies[47]、Elder和Knight [48]討論了,根據(jù)Davies的看法,和工業(yè)機(jī)器人比較,醫(yī)用機(jī)器人是完全不同的使用情況,因?yàn)獒t(yī)療機(jī)器人必須與人協(xié)作才能完全發(fā)揮效用。因此,恰當(dāng)?shù)陌踩綉?yīng)該被定義,并被機(jī)器人組織詳細(xì)的討論,能夠采取的安全措施備用傳感器的使用,能夠適應(yīng)即將到來的任務(wù)的專用機(jī)器人的設(shè)計(jì),自
34、動(dòng)補(bǔ)償技術(shù)的使用,以便于如果機(jī)器人操作失敗,它仍可以被移動(dòng),并通過手工操作來完成。對(duì)于醫(yī)療機(jī)器人來說,另一個(gè)安全問題是需要對(duì)手術(shù)室和參加手術(shù)人和機(jī)械進(jìn)行消毒和傳染物控制。(2/24/2002 機(jī)器人調(diào)查: Cleary/Nguyen 第23頁(yè))</p><p> Davies提出了一個(gè)等級(jí)制度為外科手術(shù)工具的使用者,從手持工具到全自動(dòng)機(jī)器人,他把工具進(jìn)行了排序。隨著等級(jí)向自動(dòng)機(jī)器人的靠近,手術(shù)被控制的也就越來越
35、少,并且更依賴于機(jī)器人的機(jī)構(gòu)和系統(tǒng)軟件。Davies表示直到自動(dòng)化的水平達(dá)到安全保證可以接受的水平,并就這個(gè)水平達(dá)成一致的協(xié)議,醫(yī)療器械制造商才可能逐漸開始開發(fā)醫(yī)用機(jī)器人系統(tǒng)。盡管機(jī)構(gòu)的約束是保證安全的一種好的方式,但程序上的約束盡管天生就有不安全的因素,卻更加靈活。為了有效限制可能的活動(dòng)范圍[4, 46],四種模式可以被采用,自由模式,位置模式,軌道模式和區(qū)域模式。舉個(gè)例子,區(qū)域模式尤其適合切除手術(shù),如全膝替換手術(shù),在這個(gè)手術(shù)中,手術(shù)
36、工具被預(yù)先安排在一個(gè)定義好的區(qū)域中。這個(gè)模式在培養(yǎng)居民和鄰里的關(guān)系時(shí)也有很大的價(jià)值。</p><p><b> 5.0 結(jié)論</b></p><p> 這篇論文反映了醫(yī)用機(jī)器人的發(fā)展現(xiàn)狀,幾種原形機(jī)器人系統(tǒng)和商業(yè)機(jī)器人系統(tǒng)都在文章中得到了介紹,討論了技術(shù)上的挑戰(zhàn)和未來的發(fā)展方向,為醫(yī)用機(jī)器人的使用提出了希望。</p><p> 我們僅
37、僅處于醫(yī)療機(jī)器人應(yīng)用的初級(jí)階段,很多工作還等待我們?nèi)プ?,尤其是為了滿足不同醫(yī)療手術(shù)的需要更多的測(cè)試平臺(tái)等待開發(fā),以便于獲得技術(shù)經(jīng)驗(yàn)和它怎樣融入臨床實(shí)踐的經(jīng)驗(yàn),費(fèi)用、安全性和病人的反應(yīng)也是需要考慮的,盡管已經(jīng)有了一些在市場(chǎng)上取得成功的醫(yī)療機(jī)器人,如ROBODOC 和 da Vinci,但它們還沒有完全被醫(yī)學(xué)界所接受。</p><p> 也許直到完全兼容的系統(tǒng)被開發(fā)出來后,醫(yī)療機(jī)器人的優(yōu)勢(shì)才可以顯現(xiàn)出來,在現(xiàn)在的醫(yī)
38、學(xué)領(lǐng)域里,機(jī)器人直接和想象模式聯(lián)系起來或者和病人的解剖聯(lián)系在一起,這些聯(lián)系將點(diǎn)明機(jī)器人潛在的優(yōu)點(diǎn)之所在,例如可以跟隨呼吸器官的運(yùn)動(dòng),,并且使醫(yī)生成功的完成手術(shù),而這在今天只是一種想象。</p><p><b> 6.0 致謝</b></p><p> 作者對(duì)Sumiyo Onda為了這份手稿在搜集和整理時(shí)資料提供的幫助表示感謝,這次工作得到了美國(guó)軍方的贊助,批
39、號(hào)DAMD17-96-2-6004和DAMD17-99-1-9022,本文的內(nèi)容并不反映美國(guó)政府的立場(chǎng)和政策。</p><p><b> 附件2:外文原文</b></p><p> State of the Art in Surgical Robotics:</p><p> Clinical Applications and Techn
40、ology Challenges</p><p><b> Abstract</b></p><p> While it has been over 15 years since the first recorded use of a robot for a surgical</p><p> procedure, the field o
41、f medical robotics is still an emerging one that has not yet reached a</p><p> critical mass. While robots have the potential to improve the precision and capabilities of</p><p> physicians, t
42、he number of robots in clinical use is still very small. In this review article,</p><p> we begin with a short historical review of medical robotics, followed by an overview of</p><p> clinica
43、l applications where robots have been applied. The clinical applications are then</p><p> discussed, which include neurosurgery, orthopedics, urology, maxillofacial surgery,</p><p> radiosurge
44、ry, opthamology, and cardiac surgery. We conclude with a listing of</p><p> technology challenges and research areas, including system architecture, software design,</p><p> mechanical design,
45、 imaging compatible systems, user interface, and safety issues.</p><p><b> Key Words</b></p><p> Medical robotics, review article, technology challenges, neurosurgery, orthopedics,
46、</p><p> urology, maxillofacial surgery, radiosurgery, opthamology, and cardiac surgery</p><p> 1.0 Introduction</p><p> Medical robotics has tremendous potential for improving t
47、he precision and capabilities of</p><p> physicians to perform surgical procedures. However, we are just at the beginning of the</p><p> application of robotics to medicine, and many questions
48、 remain open regarding</p><p> effectiveness, safety, and cost. While there are several commercial companies selling</p><p> medical robots, the total installed number is extremely small, and
49、the market will most</p><p> likely continue to grow slowly. Unlike the area of factory robotics, which grew rapidly</p><p> during the 1970s and 1980s, medical robotics has not yet reached a
50、critical mass.</p><p> However, it is believed the benefits of medical robotics will become increasingly clear</p><p> and this will lead to a continued rise in their use in medicine.</p>
51、;<p> According to the Robotic Institute of America, a robot is "a reprogrammable,</p><p> multifunctional manipulator designed to move materials, parts, tools, or other specialized</p>
52、<p> devices through various programmed motions for the performance of a variety of tasks."</p><p> While the term “robot” may conjure up images of R2D2 from the movie “Star Wars”, in</p>
53、<p> this paper we will stay with the definition above. These robots consist of nearly rigid</p><p> links that are connected with joints that allow relative motion from one link to another</p>
54、<p> [1]. Attached to the end of the links is the robot hand, usually referred to as the endeffector. The robot is controlled by a computer system that is used to move the endeffector to any desired point and orie
55、ntation within its workspace.</p><p> This review article highlights the state of the art of medical robotics across several</p><p> clinical areas. In this review, we will focus on robots tha
56、t play an active role during a</p><p> surgical intervention. These systems are not meant to replace the physician, but rather to</p><p> augment the capabilities of the physician. There are o
57、ther categories of medical robotics,</p><p> such as robotics for rehabilitation or miniature robots that might be placed inside the</p><p> body, but these will not be discussed here. This re
58、view is not intended to be</p><p> comprehensive, but rather to give an overview of the field, with a focus on key historical</p><p> developments and on current work.</p><p> Se
59、veral other medical robotics review articles with a focus on surgical procedures have</p><p> also been written. Davies [2] describes the history of surgical robotics and gives one</p><p> cla
60、ssification for the types of robot systems studied by researchers. Taylor [3] discusses</p><p> several taxonomies for surgical robotics and presents a different classification. Troccaz</p><p>
61、 [4] gives a historical review and describes passive, semi-active, and active robotic</p><p> systems. Howe [5] overviews applications in image-based procedures, orthopedic</p><p> surgery, a
62、nd neurosurgery, among others. Specialized reviews also exist, such as the</p><p> article by Caddedu on urology robotics [6].</p><p> The paper is organized as follows. Section 2 gives a brie
63、f historical review, followed by a</p><p> table of clinical applications in Section 3. Each of these clinical applications is then</p><p> described. Section 4 presents technology challenges
64、and research areas. Conclusions are</p><p> given in Section 5.</p><p> 2.0 Historical Review</p><p> Medical robotics is a relatively young field, with the first recorded medica
65、l application of</p><p> a robot occurring in 1985 [7]. In this case, the robot was a simple positioning device to</p><p> orient a needle for biopsy of the brain. A 52-year-old man was put on
66、 a CT scanner table,</p><p> the target was identified on the CT images, and the robot was used to orient a guide tube</p><p> through which a needle was inserted. Unfortunately, the robot use
67、d was a PUMA 560</p><p> industrial robot, and safety issues concerning the operation of the robot in close proximity to people prevented this work from continuing [2].</p><p> Shortly thereaf
68、ter, research groups in Europe, Asia, and the United States began</p><p> investigating medical applications of robotics. In Europe, a group at Imperial College in</p><p> London under the dir
69、ection of Davies began developing a robot for prostate applications</p><p> [8]. At Grenoble University Hospital in France, Benabid, Lavallee, and colleagues started</p><p> work on neurosurgi
70、cal applications such as biopsy [9]. In Asia, Dohi at Tokyo University</p><p> developed a prototype of a CT-guided needle insertion manipulator [10]. In the U.S.,</p><p> Taylor and associate
71、s at IBM began developing the system later known as ROBODOC</p><p><b> [11].</b></p><p> Currently, there are several commercial ventures and a handful of research laboratories<
72、/p><p> active in the field of medical robotics. These early research efforts have led to some</p><p> commercial products. For example, the work at Grenoble University Hospital led to the</p&
73、gt;<p> NeuroMate robot of Integrated Surgical Systems as described in Section 3.1.2.</p><p> 3.0 Clinical Applications</p><p> There are several ways to classify the use of robots in
74、medicine. One scheme, as</p><p> developed by Taylor [3], is to classify robots by the role they play in medical</p><p> applications. Taylor stresses the role of robots as tools that can work
75、 cooperatively with</p><p> physicians to carry out surgical interventions and identifies five classes of systems:</p><p> 1. Intern replacements</p><p> 2. Telesurgical systems&
76、lt;/p><p> 3. Navigational aids</p><p> 4. Precise positioning systems</p><p> 5. Precise path systems</p><p> While this classification is technology oriented, we hav
77、e chosen to divide the field by</p><p> clinical application in this paper. Clinical applications are more interesting to the enduser, and a list of seven clinical areas where robotics have been applied is
78、shown in Table</p><p> 1. This table is not meant to be inclusive, but representative research groups and</p><p> commercial vendors in several areas have been selected to give the reader an o
79、verview of</p><p> the field. The column labeled “Studies” refers to whether human trials, animal studies,</p><p> cadaver studies, or other studies have been done.</p><p> 3.1 N
80、eurosurgery</p><p> As mentioned in the historical review, neurosurgery was the first clinical application of</p><p> robotics and continues to be a topic of current interest. Neurosurgical st
81、ereotactic</p><p> applications require spatial accuracy and precision targeting to reach the anatomy of</p><p> interest while minimizing collateral damage. This section presents three neuros
82、urgical</p><p> robotic systems.</p><p> 1. Minerva from the University of Lausanne in Switzerland</p><p> 2. NeuroMate from Integrated Surgical Systems in the U.S.</p>&l
83、t;p> 3. An MRI compatible robot developed by Dohi and colleagues in Japan</p><p> 3.1.1 Minerva</p><p> One of the earliest robotic systems developed for precise needle placement was the&l
84、t;/p><p> neurosurgical robot Minerva [13], designed for stereotactic brain biopsy. A special</p><p> purpose robot was constructed which was designed to work within the CT scanner so that</p&
85、gt;<p> the surgeon could follow the position of the instruments on successive CT scans.</p><p> 3.1.2 NeuroMate</p><p> The NeuroMate is a six-axis robot for neurosurgical application
86、s that evolved from work</p><p> done by Benabid, Lavallee, and colleagues at Grenoble University Hospital in France [9,</p><p> 14, 25]. The original system was subsequently redesigned to ful
87、fill specific stereotactic</p><p> requirements and particular attention was paid to safety issues [26].</p><p> 3.1.3 MRI compatible robot</p><p> ceramics. In phantom tests usi
88、ng watermelons, the robot performed satisfactorily with a positioning error of less than 3.3 mm from the desired target. The unit was small enough at 491 mm in maximum height to fit inside the MRI gantry of 600 mm in dia
89、meter.</p><p> 3.2 Orthopedic</p><p> Orthopedics was also an early adopter of robotics, as the ROBODOC system described next was used to assist surgeons in performing part of a total hip repl
90、acement in 1992.</p><p> 3.3 Urology</p><p> One of the pioneering research groups in Medical Robotics is the Mechantronics in</p><p> Medicine Laboratory at Imperial College in
91、London. Starting in 1988, the group began</p><p> developing a robotic system named the Probot to aid in transurethral resection of the</p><p> prostate [18].</p><p> 4.0 Technol
92、ogy Challenges / Research Areas</p><p> While a number of different clinical areas are being explored as noted in Section 3, the</p><p> field of medical robotics is still in its infancy and w
93、e are just at the beginning of this era.</p><p> Only a handful of commercial companies exist and the number of medical robots sold</p><p> each year is very small. Part of the reason for this
94、 is that the medical environment is a</p><p> very complex one and the introduction of new technology is difficult. In addition, the</p><p> completion of a medical robotics project requires a
95、 partnership between engineers and</p><p> clinicians which is not easy to establish.</p><p> Technology challenges and research areas for medical robotics include both the</p><p>
96、; development of system components and the development of systems as a whole. In terms</p><p> of system components, research is needed in:</p><p> 1. system architecture</p><p>
97、 2. software design</p><p> 3. mechanical design</p><p> 4. imaging compatible designs</p><p> 5. user interface</p><p><b> 6. safety</b></p>&l
98、t;p> For medical robotics systems, the development of application testbeds is critical to move</p><p> the field forward. These testbeds can also serve to improve the dialog between engineers</p>
99、<p> and clinicians. However, at least in the U.S., it is difficult to get funding to develop these</p><p> testbeds. Governmental funding agencies such as NIH or NSF will usually not fund such</p
100、><p> efforts as they are geared more towards basic research rather than applied research and</p><p> development. Manufacturers are usually not interested because the environment and</p>
101、<p> investment payback for medical robotics is uncertain. The regulatory issues for medical</p><p> robotics have not been fully explored, although several systems have been FDA</p><p>
102、 approved. These factors remain obstacles to advancing the field. In the following sections, each of the six system components listed above are briefly discussed.</p><p> 4.1 System Architecture</p>
103、<p> For medical robotics to evolve as its own field and for the cost and difficulty of</p><p> developing prototype systems to decrease, the establishment of a system architecture</p><p>
104、; would be an enabling step. The systems architecture should emphasize modularity, as</p><p> noted by Taylor in the design of the Steady-Hand robot, which emphasizes modularity in</p><p> me
105、chanical design, control system electronics, and software [22]. A modular approach</p><p> has also been emphasized in the Urology Robotics laboratory of Stoianovici [37], where a number of mechanical modul
106、es have been developed for precision interventional</p><p> procedures.</p><p> 4.2 Software Design</p><p> The development of a software environment for medical robotics, possib
107、ly including an</p><p> appropriate real- time operating system, is a significant challenge. Many researchers</p><p> developing medical robotics system base their software development on comm
108、ercially</p><p> available software packages that may not be suitable for the surgical environment.</p><p> However, the low cost and widespread availability of these software packages makes&l
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--微型手術(shù)機(jī)器人在外科領(lǐng)域的應(yīng)用
- 機(jī)械設(shè)計(jì),外文翻譯,自動(dòng)化機(jī)器人規(guī)劃
- 機(jī)械設(shè)計(jì)制造及自動(dòng)化專業(yè)導(dǎo)論
- 機(jī)械設(shè)計(jì)外文翻譯--機(jī)器人
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化畢業(yè)設(shè)計(jì)-投籃機(jī)器人底盤的設(shè)計(jì)
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)
- 機(jī)械設(shè)計(jì)制造及自動(dòng)化
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化畢業(yè)設(shè)計(jì)-手動(dòng)機(jī)器人的設(shè)計(jì)和優(yōu)化研究
- 外文翻譯-機(jī)械模具自動(dòng)化【期刊】在機(jī)械設(shè)計(jì)和建造的流動(dòng)室外多地形機(jī)器人-中英全
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)論文
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化外文翻譯
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)論文
- 機(jī)械設(shè)計(jì)制造及其自動(dòng)化專業(yè)英語(yǔ)翻譯
- 機(jī)械設(shè)計(jì)制造與自動(dòng)化專業(yè)英語(yǔ)翻譯
- 機(jī)械設(shè)計(jì)制造及自動(dòng)化專業(yè)教學(xué)計(jì)劃
- “機(jī)械設(shè)計(jì)制造及自動(dòng)化”論文
- 機(jī)械設(shè)計(jì)制造及自動(dòng)化-論文
- [機(jī)械模具數(shù)控自動(dòng)化專業(yè)畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯]【期刊】在機(jī)械設(shè)計(jì)和建造的流動(dòng)室外多地形機(jī)器人-中文翻譯
- 機(jī)械設(shè)計(jì)制造及自動(dòng)化專業(yè)畢業(yè)設(shè)計(jì)-dwg
評(píng)論
0/150
提交評(píng)論