版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 單一的神經(jīng)網(wǎng)絡PI控制高可靠性直線電機磁浮</p><p> 摘要:本文論述了一種可以改善系統(tǒng)可靠性的新型線性鼠籠電機(linear induction motor, LIM)從LIM的標準電路方程考慮動力學終端效應,當制動特性同時作為影響力時,可以建立包含有大的補償終端效應的等效電路模型。等效電路模型可以用作LIM的二次磁場定向控制。同時討論了單神經(jīng)網(wǎng)路PI單元作為LIM的輔助驅動效果,
2、驅動控制的數(shù)學模型的有效性通過模擬實驗被證實。</p><p> 關鍵字:線性鼠籠電機(LIM),磁場定向控制,終端效應</p><p><b> 前 言</b></p><p> 線性鼠籠電機是在低速磁浮系統(tǒng)中作為耐熱系統(tǒng),來驅動車輛。LIM之所以有終端效應取決于它獨特的裝置。由動力學終端效應產生的渦流動力導致了線性電機的額外損失,從
3、而減少了推動力。當矢量控制策略應用于LIM時,就必須考慮終端效應的影響,并且建立更精確的數(shù)學模型來完善控制系統(tǒng)的整體性能。</p><p> 在本文中,討論了在考慮終端效應很大時LIM的電路方程,推導出了LIM的計算模型。智能控制方法被用來解決人力所難以操作的問題。而單神經(jīng)PI控制單元之所以能被用于LIM的輔助驅動是由于它簡單的構造。模擬實驗已經(jīng)證實了這些模型在改善整體性能上的有效性和可靠性。</p>
4、;<p> 考慮了終端效應的LIM的電路方程</p><p> 在一個長的二級類型的LIM中,和一級不同的是在二級類型中連續(xù)更換了新材料,這種新材料傾向于抵制滲透通量的突然增加,且只允許空間間隙中滲透密度的逐漸積聚。在二級板塊的進口端和出口端,因為磁通量的突然轉變,會產生渦流,這種感應電流可以避免氣隙磁場的突然改變。</p><p> 考慮到動力學終端效應,線性電機的有
5、效長度假設為l,二級參數(shù)轉化為一級參數(shù),在二級核心的進口端,渦流迅速增加,增加速率可以由下式計算:</p><p> T1 = Lr1 / Rr</p><p> 式中: Lr1——由二級轉化為一級的滲漏電感系數(shù);</p><p> Rr ——由二級轉化為一級的等效電阻。</p><p> 因為T1 = Lr1 / Rr的值很
6、小,故可以忽略。二級渦流可以迅速的達到一級勵磁電流,而一級電流的渦流階段則相反。二級渦流的時間常數(shù)的減少可以用下式描述:</p><p> T2 =(Lm+ Lr1)/ Rr</p><p><b> = Lr / Rr</b></p><p> 式中: Lr——LIM的電感系數(shù)。</p><p> 在
7、二級出口板上,渦流迅速增加至Im,然后隨著時間常數(shù)T1的變化而降低。瞬態(tài)過程見圖1.給予以上分析,終端效應可以添加到等效電路中。</p><p> 圖1:(a)氣隙磁動力;(b)二級板磁動力</p><p> 一級和二級之間的相對速度決定了氣隙磁場的分布。假設ν是一級速度,在T2時間,一級的移動長度為νT2。一級通過二級的點的時間為:</p><p> (1)
8、則標準電機長度為:</p><p> (2)在這里Q是一個無量剛的常數(shù),代表了在標準時間尺度下的電機長度,二級渦流的平均值為:</p><p> (3)等效勵磁電流為:</p><p> (4)這里Imea是考慮了動力學終端效應的等效勵磁電流。消磁效應可以反應修正的勵磁電流,所以總的勵磁電流為:</p><p> (5)在進口端二級渦
9、流的虛擬值為:</p><p> (6)進口端的渦流損失:</p><p> (7)出口端的渦流損失:</p><p> (8)二級過程中總的渦流損失:</p><p> (9)渦流損失可以定義為勵磁回路中的串聯(lián)電阻。設。圖2所示為考慮了終端效應的T型等效電路。</p><p> 圖2:LIM的等效電路圖&l
10、t;/p><p> 考慮了終端效應的LIM模型</p><p> 在二級渦流的定向矢量控制中,同步參照系和二級渦流是一致的,在q軸線上無分量。Ψrd=Ψ2,Ψrq=0?;谝陨戏治?,LIM模型的描述如下:</p><p> (10) </p><p> (11)
11、 </p><p> (12) </p><p> (13) </p><p> (14) </p><p> (15)
12、 </p><p> (16) </p><p> (17) </p><p> (18)
13、 </p><p> (19) </p><p> 在式(19)中的第二部分,是終端效應產生的動力學動力。</p><p><b> 單神經(jīng)網(wǎng)絡PI單元</b></p><p> 減少LIM模型中輔助驅動系統(tǒng)的參數(shù)偏差很重要。智能控制方法被用來解決人力所難以操作的問題。而
14、單神經(jīng)PI控制單元之所以能被用于LIM的輔助驅動是由于它簡單的構造。由于LIM中的氣隙很寬,而導致的滲漏磁力流很大,所以很難有一個精確的LIM模型。在LIM的輔助控制中引入人工神經(jīng)網(wǎng)絡是很有用的。其中單神經(jīng)控制更為實用。單神經(jīng)網(wǎng)絡的結構圖見圖3。單神經(jīng)網(wǎng)絡的輸出為:</p><p><b> ,</b></p><p> , (20) &
15、lt;/p><p> 其中xi(k)(i=1、2、3),代表了常規(guī)PID調節(jié)器的整體單元、比例單元和微分單元。</p><p> 圖3 單神經(jīng)控制的PI單元</p><p><b> 控制器的輸出為:</b></p><p><b> (21)</b></p><p>
16、 其中,最大限額,相當于線性電機的最大拉力,權重因子為:</p><p> , (22)</p><p><b> 其中。</b></p><p> 圖4所示的是二級渦流定向控制模型的電路圖,有一個LIM、一個帶有單神經(jīng)控制PI單元的速度反饋控制回路、一個PWM變壓器和一個矢量控制器組成。
17、</p><p> 圖4:帶有單神經(jīng)控制PI單元的二級定向控制模型</p><p> 圖4:帶有單神經(jīng)控制PI單元的二級定向控制模型</p><p> 注:ASR—速度調節(jié)器;ATR—回路調節(jié)器;</p><p> AΨR—流量調節(jié)閥;SFB—速度反饋單元。</p><p><b> 結果和討論&l
18、t;/b></p><p> 基于以上對數(shù)學模型和控制計算的分析,有人做了一個LIM的模擬實驗,對單神經(jīng)PI調節(jié)和普通PI調節(jié)做了對比。在輔助系統(tǒng)中所使用的LIM型號是三相的,Y端連接兩極、2.5kW、50Hz、380V。LIM的參數(shù)是:Rs=4.097Ω,Rr=8.8Ω,Ls=0.1002H,Lm=0.0771H,Lr=0.08H,τ=0.063m。</p><p> 圖5中所
19、示是前面討論的LIM模型的模擬實驗的結果。</p><p> 圖5:模擬實驗結果。(a)速度;(b)電流id;(c)電流iq</p><p> 圖6所示為普通PI單元和單神經(jīng)網(wǎng)絡PI單元的速度追蹤實驗結果的比較。在模擬實驗中可以看出,單神經(jīng)網(wǎng)絡PI調節(jié)的反應速度很快,并且穩(wěn)態(tài)誤差較小。,在階躍反應中,速度波動較小。</p><p> 本文討論了判斷LIM終端效
20、應的一種電路方程,此方程適用于終端效應比較大時的條件。矢量控制的模型已經(jīng)提出,單神經(jīng)網(wǎng)絡PI單元已經(jīng)被用于LIM的輔助驅動。模擬實驗的結論表明,終端效應可以通過此過程得到彌補,并且控制系統(tǒng)的性能有所改善。單神經(jīng)網(wǎng)絡PI單元適用于控制計算的設計。</p><p> 圖6:階段反應的速度曲線</p><p><b> 參考文獻</b></p><p
21、> Boldea, I., Nasar, S.A., 1999. Linear electric actuators and generators. IEEE Trans. on Energy Conversion, 14(3):712-717. [doi:10.1109/60.790940]</p><p> Duncan, J., Eng, C., 1983. Linear induction
22、motor-equivalent-circuit model. Proc. IEE, 130(1):51-57.</p><p> Sung, J., Nam, K., 1999. A New Approach to Vector Control for a Linear Induction Motor Considering End Effects. Conference Record of the IEEE
23、 IAS Annual Meeting’1999, 4:2284-2289.</p><p> Takahashi, I., Ide, Y., 1993. Decoupling control of thrust and attractive force of a LIM using a space vector control inventor. IEEE Trans. Ind. Appl., 29(1):1
24、61-167.[doi:10.1109/28.195902]</p><p> Wu, X.M., 2003. Maglev Vehicle. Shanghai Science and Technology Press, Shanghai (in Chinese).</p><p> Ye, Y.Y., 2000. Linear Motor and Its Control. Machi
25、ne Press,Beijing (in Chinese).</p><p> Single neuron network PI control of high reliability linear induction motor for Maglev</p><p> FANG You-tong, FAN Cheng-zhi</p><p> Abstrac
26、t: The paper deals with a new model of linear induction motor (LIM) to improve the reliability of the system. Based on the normal equation circuit of LIM considering the dynamic end effect, an equivalent circuit model wi
27、th compensation of large end effect is constructed when the end effect force at synchronism is of braking character. The equivalent circuit model is used for secondary-flux oriented control of LIM. Single neuron network
28、PI unit for LIM servo-drive is also discussed. The ef</p><p> Key words: Linear induction motor (LIM), Field-oriented control, End effect</p><p> INTRODUCTION</p><p> The linear
29、inductance motor (LIM) is used in such low-speed Maglev system as HSST system to drive vehicles (Wu, 2003). LIM has the end effect owing to its unique configuration. The eddy current produced by the dynamic end effect ca
30、uses additional loss of linear motor which reduces thrust (Duncan and Eng, 1983; Boldea and Nasar, 1999). When the vector control strategy is applied to LIM, the influence of the end effect must be considered and an exac
31、t mathematical model should be constituted to imp</p><p> In this paper, the equation circuit of LIM considering large end effect is discussed, and the calculation model of LIM is deduced. The intelligent c
32、ontrol method is adopted to solve the problem of robustness. The single neuron control PI unit is adopted for LIM servo-drive because of its simple configuration. The simulation has validated the obvious effects of those
33、 methods on improving the whole performance, including reliability.</p><p> EQUATION CIRCUIT OF LIM CONSIDERING END EFFECT</p><p> In a long secondary type LIM, as the primary moves, the secon
34、dary is continuously replaced by new material. This new part material tends to resist a sudden increase in flux penetration and only allows a gradual buildup of the flux density in air gap. Eddy current in the entry or e
35、xit end of secondary plate will be produced because of a sudden change of magnetic flux. This inductive current will prevent the change of air gap magnetic field (Sung and Nam, 1999).</p><p> Considering th
36、e dynamic end effect, the effective length of linear motor’ primary is supposed as l, and the secondary parameter is converted into the primary’s. At the entry end of secondary core, the eddy current increases promptly,
37、and the increasing rate can be decided by T1=Lr1/Rr (Lr1 is the secondary leaking inductance converted into the primary’s, Rr is the secondary equivalent resistance converted into theprimary’s).</p><p> Bec
38、ause T1=Lr1/Rr is very small and can be neglected, the secondary eddy current can reach the primary exciting current Im rapidly, while the phase of eddy current is contrary with primary current. The time constant of seco
39、ndary eddy current decrease can be described as T2=(Lm+Lr1)/Rr=Lr/Rr (Lm is the mutual inductance of LIM). At the exit of secondary plate, the eddy current increases to Im promptly, and then decreases with the time const
40、ant T1. The transient</p><p> process is shown in Fig.1. Based on the above analysis, the end effect can be added into the equivalent circuit.</p><p> The relative velocity between the primary
41、 and secondary decides the distribution of magnetic flux along air gap. Suppose v is the primary velocity, in T2 time the primary moves a length of vT2. The time of the primary passing a point on the secondary is</p&g
42、t;<p> Tv=l/v. (1)</p><p> Then normalize the motor length</p><p> Q=l/(vT2)=vTv/(vT2)=Tv/T2=lRr/[(Lm+Lr1)v], (2)</p><p>
43、 where Q is a dimensionless parameter representing the motor length on the normalized time scale. The average value of secondary eddy current is</p><p><b> (3)</b></p><p> Equival
44、ent exciting current is</p><p><b> (4)</b></p><p> where Imea is the equivalent exciting current considering the dynamic end effect. The demagnetizing effect can be reflected by am
45、ending the exciting current, so the total exciting current is:</p><p><b> (5)</b></p><p> The virtual value of the secondary eddy current at entry is</p><p><b>
46、 (6)</b></p><p> The eddy current loss at entry end is</p><p><b> (7)</b></p><p> The eddy current loss at exit end is</p><p><b> (8)</b&
47、gt;</p><p> The total loss of the secondary is</p><p><b> (9)</b></p><p> The eddy current loss can be described as a series resistance (Rr(1?e?Q)/Q) in exciting circ
48、uit.</p><p> Suppose f(Q)=(1?e?Q)/Q, the T-type equivalent circuit considered the end effect is shown in Fig.2.</p><p> MODEL OF LIM CONSIDERING END EFFECT</p><p> In the seconda
49、ry-flux oriented vector control, the synchronous reference frame is aligned to the secondary-flux. There is no component along the q axis, ψrd=ψ2, ψrq=0. Based on above analysis, the LIM model is described as follows:<
50、;/p><p><b> (10)</b></p><p><b> (11)</b></p><p><b> (12)</b></p><p><b> (13)</b></p><p><b> (14)<
51、;/b></p><p><b> (15)</b></p><p><b> (16)</b></p><p><b> (17)</b></p><p><b> (18)</b></p><p><b>
52、; (19)</b></p><p> The second term in Eq.(19) acts as dynamic brake force caused by end effect.</p><p> SINGLE NEURON NETWORK PI UNIT</p><p> It is very important to reduc
53、e the parameter deviation of LIM model for servo-drive system. The intelligent control method has been adopted to solve the problem of robustness. The single neuron control PI unit is adopted for speed control because of
54、 its simple configuration (Ye, 2000).</p><p> Since the leaking magnetic flux in LIM is quite large for its wide air gap, it is difficult to have an accurate model of LIM. It is useful to introduce the arti
55、ficial neural networks into the LIM servo-control, where the single neuron control is more practical. The configuration of single neuron is shown in Fig.3. The input of single neuron is</p><p><b> ,&l
56、t;/b></p><p> , (20) </p><p> where xi(k) (i=1, 2, 3) stand for integral unit, proportional unit and differential unit of normal PID adjustor.</p>
57、<p> The output of controller is</p><p><b> (21)</b></p><p> where |u(k)|≤Umax, Umax is the maximum of limitation, equal to the maximum given pull of linear motor. The weigh
58、t factor is</p><p> , (22)</p><p><b> where。</b></p><p> Fig.4 shows the block diagram of secondary-flux oriented control model, which consist
59、s of a LIM (Takahashi and Ide, 1993), a speed feedback control loop with single neuron control PI unit, a PWM voltage source translator, and vector control translation components.</p><p> ASR: Speed regulat
60、or; ATR: Torque regulator; </p><p> AψR: Flux regulator; SFB: Speed feedback unit</p><p> RESULTS AND CONCLUSIONS</p><p> Based on the above analysis of mathematics model and con
61、trol arithmetic, a simulation for LIM is performed. Comparison between single neuron PI adjustment and normal PI adjustment has been performed. The LIM used in the serve system is three-phase Y-connected two-pole 2.5 kW
62、50 Hz 380 V type. The parameters of LIM are: Rs=4.097 Ω, Rr=8.8 Ω, Ls=0.1002 H, Lm=0.0771 H, Lr=0.08 H, τ=0.063 m.</p><p> Fig.5 presents simulation result by LIM model discussed above.</p><p&g
63、t; Fig.6 shows the comparison of speed tracking with normal PI unit and single neuron network PI unit. From the simulation, it can be concluded that the speed response of the single neuron network PI adjustment is fast,
64、 and the steady-state error is smaller.For step response, the speed fluctuation is small.</p><p> In this paper, an equation circuit considering the dynamic end effect of LIM is discussed, which is suitable
65、 for the large end effect condition. The model for vector control has been presented. Single neuron network PI unit is introduced for LIM servo-drive. The simulative conclusion shows that the end effect can be compensate
66、d by this model, and the control system performance is improved. The single neuron network PI unit is suitable for the control arithmetic design.</p><p> V: Set up speed; V1: Trace speed with PI unit;</p
67、><p> V2: Trace speed with single neuron network PI unit</p><p><b> 參考文獻</b></p><p> Boldea, I., Nasar, S.A., 1999. Linear electric actuators and generators. IEEE Tran
68、s. on Energy Conversion, 14(3):712-717. [doi:10.1109/60.790940]</p><p> Duncan, J., Eng, C., 1983. Linear induction motor-equivalent-circuit model. Proc. IEE, 130(1):51-57.</p><p> Sung, J., N
69、am, K., 1999. A New Approach to Vector Control for a Linear Induction Motor Considering End Effects. Conference Record of the IEEE IAS Annual Meeting’1999, 4:2284-2289.</p><p> Takahashi, I., Ide, Y., 1993.
70、 Decoupling control of thrust and attractive force of a LIM using a space vector control inventor. IEEE Trans. Ind. Appl., 29(1):161-167.[doi:10.1109/28.195902]</p><p> Wu, X.M., 2003. Maglev Vehicle. Shang
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電氣專業(yè)畢業(yè)設計外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯9
- 電氣專業(yè)畢業(yè)設計外文翻譯9
- 電氣專業(yè)畢業(yè)設計外文翻譯7
- 電氣專業(yè)畢業(yè)設計外文翻譯 10
- 電氣專業(yè)畢業(yè)設計外文翻譯--防雷接地
- 電氣專業(yè)外文翻譯---抗雷擊架空配電線路的可靠性
- 電氣專業(yè)畢業(yè)設計外文翻譯--小區(qū)配電設計
- 電氣專業(yè)畢業(yè)設計外文翻譯--防雷接地.docx
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 電氣專業(yè)畢業(yè)設計外文翻譯--變壓器
- 畢業(yè)設計---高可靠性電子鎖仿真設計
- 電氣專業(yè)畢業(yè)論文外文翻譯
- 電氣專業(yè)畢業(yè)設計外文翻譯--光伏陣列和逆變器
- 電氣專業(yè)畢業(yè)論文外文翻譯--控制電路設計
- 電氣專業(yè)畢業(yè)設計(論文)
- 高可靠性定子永磁型電機及其容錯控制.pdf
- 電氣專業(yè)畢業(yè)設計外文翻譯----電力變壓器工作原理
評論
0/150
提交評論