版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 外文資料翻譯</b></p><p> High-Rise Buildings</p><p> Introduction</p><p> It is difficult to define a high-rise building . One may say that a low-rise buildin
2、g ranges from 1 to 2 stories . A medium-rise building probably ranges between 3 or 4 stories up to 10 or 20 stories or more . </p><p> Although the basic principles of vertical and horizontal subsystem desi
3、gn remain the same for low- , medium- , or high-rise buildings , when a building gets high the vertical subsystems become a controlling problem for two reasons . Higher vertical loads will require larger columns , walls
4、, and shafts . But , more significantly , the overturning moment and the shear deflections produced by lateral forces are much larger and must be carefully provided for .</p><p> The vertical subsystems in
5、a high-rise building transmit accumulated gravity load from story to story , thus requiring larger column or wall sections to support such loading . In addition these same vertical subsystems must transmit lateral loads
6、, such as wind or seismic loads , to the foundations. However , in contrast to vertical load , lateral load effects on buildings are not linear and increase rapidly with increase in height . For example under wind load ,
7、 the overturning moment at the ba</p><p> When the structure for a low-or medium-rise building is designed for dead and live load , it is almost an inherent property that the columns , walls , and stair or
8、elevator shafts can carry most of the horizontal forces . The problem is primarily one of shear resistance . Moderate addition bracing for rigid frames in“short”buildings can easily be provided by filling certain panels
9、( or even all panels ) without increasing the sizes of the columns and girders otherwise required for vertical loads</p><p> Unfortunately , this is not is for high-rise buildings because the problem is pri
10、marily resistance to moment and deflection rather than shear alone . Special structural arrangements will often have to be made and additional structural material is always required for the columns , girders , walls , an
11、d slabs in order to made a high-rise buildings sufficiently resistant to much higher lateral deformations . </p><p> As previously mentioned , the quantity of structural material required per square foot of
12、 floor of a high-rise buildings is in excess of that required for low-rise buildings . The vertical components carrying the gravity load , such as walls , columns , and shafts , will need to be strengthened over the full
13、 height of the buildings . But quantity of material required for resisting lateral forces is even more significant .</p><p> With reinforced concrete , the quantity of material also increases as the number
14、of stories increases . But here it should be noted that the increase in the weight of material added for gravity load is much more sizable than steel , whereas for wind load the increase for lateral force resistance is n
15、ot that much more since the weight of a concrete buildings helps to resist overturn . On the other hand , the problem of design for earthquake forces . Additional mass in the upper floors will give r</p><p>
16、 In the case of either concrete or steel design , there are certain basic principles for providing additional resistance to lateral to lateral forces and deflections in high-rise buildings without too much sacrifire in
17、economy . </p><p> Increase the effective width of the moment-resisting subsystems . This is very useful because increasing the width will cut down the overturn force directly and will reduce deflection by
18、the third power of the width increase , other things remaining cinstant . However , this does require that vertical components of the widened subsystem be suitably connected to actually gain this benefit.</p><
19、p> Design subsystems such that the components are made to interact in the most efficient manner . For example , use truss systems with chords and diagonals efficiently stressed , place reinforcing for walls at critic
20、al locations , and optimize stiffness ratios for rigid frames . </p><p> Increase the material in the most effective resisting components . For example , materials added in the lower floors to the flanges o
21、f columns and connecting girders will directly decrease the overall deflection and increase the moment resistance without contributing mass in the upper floors where the earthquake problem is aggravated . </p><
22、;p> Arrange to have the greater part of vertical loads be carried directly on the primary moment-resisting components . This will help stabilize the buildings against tensile overturning forces by precompressing the
23、major overturn-resisting components . </p><p> The local shear in each story can be best resisted by strategic placement if solid walls or the use of diagonal members in a vertical subsystem . Resisting the
24、se shears solely by vertical members in bending is usually less economical , since achieving sufficient bending resistance in the columns and connecting girders will require more material and construction energy than usi
25、ng walls or diagonal members . </p><p> Sufficient horizontal diaphragm action should be provided floor . This will help to bring the various resisting elements to work together instead of separately . <
26、/p><p> Create mega-frames by joining large vertical and horizontal components such as two or more elevator shafts at multistory intervals with a heavy floor subsystems , or by use of very deep girder trusses
27、.</p><p> Remember that all high-rise buildings are essentially vertical cantilevers which are supported at the ground . When the above principles are judiciously applied , structurally desirable schemes ca
28、n be obtained by walls , cores , rigid frames, tubular construction , and other vertical subsystems to achieve horizontal strength and rigidity . Some of these applications will now be described in subsequent sections in
29、 the following . </p><p> Shear-Wall Systems</p><p> When shear walls are compatible with other functional requirements , they can be economically utilized to resist lateral forces in high-ris
30、e buildings . For example , apartment buildings naturally require many separation walls . When some of these are designed to be solid , they can act as shear walls to resist lateral forces and to carry the vertical load
31、as well . For buildings up to some 20storise , the use of shear walls is common . If given sufficient length ,such walls can economically res</p><p> However , shear walls can resist lateral load only the p
32、lane of the walls ( i.e.not in a diretion perpendicular to them ) . There fore ,it is always necessary to provide shear walls in two perpendicular directions can be at least in sufficient orientation so that lateral forc
33、e in any direction can be resisted . In addition , that wall layout should reflect consideration of any torsional effect . </p><p> In design progress , two or more shear walls can be connected to from L-sh
34、aped or channel-shaped subsystems . Indeed , internal shear walls can be connected to from a rectangular shaft that will resist lateral forces very efficiently . If all external shear walls are continuously connected , t
35、hen the whole buildings acts as tube , and connected , then the whole buildings acts as a tube , and is excellent Shear-Wall Seystems resisting lateral loads and torsion . </p><p> Whereas concrete shear wa
36、lls are generally of solid type with openings when necessary , steel shear walls are usually made of trusses . These trusses can have single diagonals , “X”diagonals , or“K”arrangements . A trussed wall will have its mem
37、bers act essentially in direct tension or compression under the action of view , and they offer some opportunity and deflection-limitation point of view , and they offer some opportunity for penetration between members .
38、 Of course , the inclined members o</p><p> As stated above , the walls of elevator , staircase ,and utility shafts form natural tubes and are commonly employed to resist both vertical and lateral forces .
39、Since these shafts are normally rectangular or circular in cross-section , they can offer an efficient means for resisting moments and shear in all directions due to tube structural action . But a problem in the design o
40、f these shafts is provided sufficient strength around door openings and other penetrations through these elements . Fo</p><p> In many high-rise buildings , a combination of walls and shafts can offer excel
41、lent resistance to lateral forces when they are suitably located ant connected to one another . It is also desirable that the stiffness offered these subsystems be more-or-less symmertrical in all directions .</p>
42、<p> Rigid-Frame Systems</p><p> In the design of architectural buildings , rigid-frame systems for resisting vertical and lateral loads have long been accepted as an important and standard means for
43、 designing building . They are employed for low-and medium means for designing buildings . They are employed for low- and medium up to high-rise building perhaps 70 or 100 stories high . When compared to shear-wall syste
44、ms , these rigid frames both within and at the outside of a buildings . They also make use of the stiffness in bea</p><p> Frequently , rigid frames will not be as stiff as shear-wall construction , and the
45、refore may produce excessive deflections for the more slender high-rise buildings designs . But because of this flexibility , they are often considered as being more ductile and thus less susceptible to catastrophic eart
46、hquake failure when compared with ( some ) shear-wall designs . For example , if over stressing occurs at certain portions of a steel rigid frame ( i.e.,near the joint ) , ductility will allow the </p><p>
47、In the case of concrete rigid frames ,there is a divergence of opinion . It true that if a concrete rigid frame is designed in the conventional manner , without special care to produce higher ductility , it will not be a
48、ble to withstand a catastrophic earthquake that can produce forces several times lerger than the code design earthquake forces . therefore , some believe that it may not have additional capacity possessed by steel rigid
49、frames . But modern research and experience has indicated th</p><p> Of course , it is also possible to combine rigid-frame construction with shear-wall systems in one buildings ,F(xiàn)or example , the buildings
50、 geometry may be such that rigid frames can be used in one direction while shear walls may be used in the other direction。</p><p><b> Summary</b></p><p> Above states is the high-r
51、ise construction ordinariest structural style. In the design process, should the economy practical choose the reasonable form as far as possible.</p><p> 外文資料翻譯(譯文)</p><p><b> 高層建筑</b
52、></p><p><b> 前 沿</b></p><p> 高層建筑的定義很難確定??梢哉f2-3層的建筑物為底層建筑,而從3-4層地10層或20層的建筑物為中層建筑,高層建筑至少為10層或者更多。</p><p> 盡管在原理上,高層建筑的豎向和水平構件的設計同低層及多層建筑的設計沒什么區(qū)別,但使豎向構件的設計成為高層設計有兩個
53、控制性的因素:首先,高層建筑需要較大的柱體、墻體和井筒;更重要的是側向里所產生的傾覆力矩和剪力變形要大的多,必要謹慎設計來保證。</p><p> 高層建筑的豎向構件從上到下逐層對累積的重力和荷載進行傳遞,這就要有較大尺寸的墻體或者柱體來進行承載。同時,這些構件還要將風荷載及地震荷載等側向荷載傳給基礎。但是,側向荷載的分布不同于豎向荷載,它們是非線性的,并且沿著建筑物高度的增加而迅速地增加。例如,在其他條件都相
54、同時,風荷載在建筑物底部引起的傾覆力矩隨建筑物高度近似地成平方規(guī)律變化,而在頂部的側向位移與其高度的四次方成正比。地震荷載的效應更為明顯。</p><p> 對于低層和多層建筑物設計只需考慮恒荷載和部分動荷載時,建筑物的柱、墻、樓梯或電梯等就自然能承受大部分水平力。所考慮的問題主要是抗剪問題。對于現(xiàn)代的鋼架系統(tǒng)支撐設計,如無特殊承載需要,無需加大柱和梁的尺寸,而通過增加板就可以實現(xiàn)。</p>&l
55、t;p> 不幸的是,對于高層建筑首先要解決的不僅僅是抗剪問題,還有抵抗力矩和抵抗變形問題。高層建筑中的柱、梁、墻及板等經常需要采用特殊的結構布置和特殊的材料,以抵抗相當高的側向荷載以及變形。</p><p> 如前所述,在高層建筑中每平方英尺建筑面積結構材料的用量要高于低層建筑。支撐重力荷載的豎向構件,如墻、柱及井筒,在沿建筑物整個高度方向上都應予以加強。用于抵抗側向荷載的材料要求更多。</p&g
56、t;<p> 對于鋼筋混凝土建筑,雖著建筑物層數(shù)的增加,對材料的要求也隨著增加。應當注意的是,因混凝土材料的質量增加而帶來的建筑物自重增加,要比鋼結構增加得多,而為抵抗風荷載的能力而增加的材料用量卻不是呢么多,因為混凝土自身的重量可以抵抗傾覆力矩。不過不利的一面是混凝土建筑自重的增加,將會加大抗震設計的難度。在地震荷載作用下,頂部質量的增加將會使側向荷載劇增。</p><p> 無論對于混凝土結
57、構設計,還是對于鋼結構設計,下面這些基本的原則都有助于在不需要增加太多成本的前提下增強建筑物抵抗側向荷載的能力。</p><p> 增加抗彎構件的有效寬度。由于當其他條件不變時能夠直接減小扭矩,并以寬度增量的三次冪形式減小變形,因此這一措施非常有效。但是必須保證加寬后的豎向承重構件非常有效地連接。</p><p> 在設計構件時,盡可能有效地使其加強相互作用力。例如,可以采用具有有效應
58、力狀態(tài)的弦桿和桁架體系;也可在墻的關鍵位置加置鋼筋;以及最優(yōu)化鋼架的剛度比等措施。</p><p> 增加最有效的抗彎構件的截面。例如,增加較低層柱以及連接大梁的翼緣截面,將可直接減少側向位移和增加抗彎能力,而不會加大上層樓面的質量,否則,地震問題將更加嚴重。</p><p> 通過設計使大部分豎向荷載,直接作用于主要的抗彎構件。這樣通過預壓主要的抗傾覆構件,可以使建筑物在傾覆拉力的作
59、用下保持穩(wěn)定。</p><p> 通過合理地放置實心墻體及在豎向構件中使用斜撐構件,可以有效地抵抗每層的局部剪力。但僅僅通過豎向構件進行抗剪是不經濟的,因為使柱及梁有足夠的抗彎能力,比用墻或斜撐需要更多材料和施工工作量。</p><p> 每層應加設充足的水平隔板。這樣就會使各種抗力構件更好地在一起工作,而不是單獨工作。</p><p> 在中間轉換層通過大型
60、豎向和水平構件及重樓板形成大框架,或者采用深梁體系。</p><p> 應當注意的是,所有高層建筑的本質都是地面支撐的懸臂結構。如何合理地運用上面所提到的原則,就可以利用合理地布置墻體、核心筒、框架、筒式結構和其他豎向結構分體系,使建筑物取得足夠的水平承載力和剛度。本文后面將對這些原理的應用做介紹。</p><p><b> 剪力墻結構</b></p>
61、<p> 在能夠滿足其他功能需求時,高層建筑中采用剪力墻可以經濟地進行高層建筑的抗側向荷載設計。例如,住宅樓需要很多隔墻,如果這些隔墻都設計為實例的,那么他們可以起到剪力墻的作用,既能抵抗側向荷載,又能承受豎向荷載。對于20層以上的建筑物,剪力墻極為常見。如果給與足夠的寬度,剪力墻能夠有效地抵抗30-40層甚至更多的側向荷載。</p><p> 但是,剪力墻只能抵抗平行于墻平面的荷載(也就是說不
62、能抵抗垂直于墻的荷載)。因此有必要經常在兩個相互垂直的方向設置剪力墻,或者在盡可能多的方向布置,以用來抵抗各個方向的側向荷載。并且,墻體設計還應考慮扭轉的問題。</p><p> 在設計過程中,兩片或者更多的剪力墻會布置成L型或者槽形。實際上,四片內剪力墻可以被聯(lián)結成矩形,以更有效地抵抗側向荷載。如果所有外部剪力墻都連接起來,整個建筑物就像是一個筒體,將會具有很強的抵抗水平荷載和抵抗扭矩的能力。</p&g
63、t;<p> 通常混凝土就剪力墻都是實體的,并在有要求時開洞,而鋼筋剪力墻常常是做成桁架式。這些桁架上可能布置成蛋單斜撐、X斜撐及K斜撐。在側向力作用下這些桁架的組合構件受到或拉或壓力。從強度和變形控制角度來說,桁架有著很好的功效,并且管道可以在構件之間穿過。當然,鋼桁架墻的斜向構件在墻體上要正確放置,以免妨礙開窗、循環(huán)以及管道穿墻。</p><p> 如上所述,電梯強、樓梯間及設備豎井都可以形
64、成筒狀體,常常用它們既抵抗豎向荷載又抵抗水平荷載。這些筒的橫斷面一般駛矩形或圓形,由于筒結構作用,筒狀結構能夠有效地進行各個方向上的抗彎和抗剪。不過在這樣的結構設計中存在的問題是,如何保證在門洞口和其他孔洞的強度。對于鋼筋混凝土結構,通過使用特殊的鋼筋配置在這些孔洞的周圍。對于鋼剪力墻,則要求在開洞處加強節(jié)點連接,以抵抗洞口變形。</p><p> 對于很多高層建筑,如果墻體和筒架進行合理地安排與連接,會起到很
65、好的抵抗側向荷載的作用。還要求由這些結構分體系提供的剛度在各個方向上應大體對稱。</p><p><b> 框架結構</b></p><p> 在建筑物結構設計中,用于抵抗豎向和水平荷載的框架結構,常作為一個重要且標準的型式而被采用。它適用于低層、多層建筑物,亦可用于70-100層高的高層建筑物。同剪力墻結構相比,這種結構更適合在建筑物的內部或者外圍的墻體上開設矩
66、形孔洞。同時它還能充分利用建筑物內在任何情況下都要采用的梁和柱的剛度,但當柱子與梁剛性連接時,通過框架受彎來抵抗水平和豎向荷載會使這些柱子的承載能力變得更大。</p><p> 大多情況下,框架的剛度不如剪力墻,因此對于細長的建筑物將會出現(xiàn)過度變形。但正是因為其柔性,使得其與剪力墻結構相比具有更大的延性,因而地震荷載下不易發(fā)生事故。例如,如果框架局部出現(xiàn)超應力時,那么其延性就會允許整個結構出現(xiàn)倒塌事故。因此,框
67、架結構常被視為最好的高層抗震結構。另一方面,設計得好的剪力墻結構也不可能倒塌。</p><p> 對于混凝土框架結構,還存在較大的分歧。的確。如果在混凝土框架設計時不進行特殊的延性設計,那么他將很難承受比設計標準值大很多倍的地震荷載的沖擊。因此,很多人認為它不具備鋼框架所具備的超載能力。不過最新的研究i和實驗表明,當混凝土中放入充分的鋼箍和節(jié)點鋼筋時 ,混凝土框架框架也能表現(xiàn)出很好的延性。新建筑規(guī)范對所謂延性混
68、凝土框架有專門的規(guī)定。然而,這些規(guī)范往往要求在框架的某處增設過多的鋼筋,這就增加了施工的難度。盡管這樣,混凝土框架設計還是具備既經濟又實用的特性。</p><p> 當然,還可以在建筑結構設計中,將框架結構和剪力墻結構結合起來使用。例如,在房屋建筑上使用框架,而在另一方向上可以使用剪力墻。</p><p><b> 結論</b></p><p&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高層建筑外文翻譯 (2)
- [雙語翻譯]高層建筑外文翻譯
- 高層建筑組成外文翻譯
- [雙語翻譯]高層建筑外文翻譯.DOC
- [雙語翻譯]高層建筑外文翻譯(英文)
- [雙語翻譯]高層建筑外文翻譯中英全
- [雙語翻譯]高層建筑外文翻譯(英文).PDF
- 高層建筑與鋼結構外文翻譯
- 2017年高層建筑外文翻譯
- 高層建筑畢業(yè)論文外文翻譯
- 高層建筑結構的發(fā)展-外文翻譯
- 外文翻譯---- 高層建筑設計標準
- 外文翻譯---高層建筑施工的控制要點
- 土木外文翻譯---高層建筑與鋼結構
- 2017年高層建筑外文翻譯.DOC
- 土木專業(yè)畢業(yè)設計外文翻譯---高層建筑
- 外文翻譯--高層建筑設計與城市空間
- 外文翻譯---高層建筑及結構設計
- 2017年高層建筑外文翻譯(英文).PDF
- 外文翻譯---高層建筑施工的控制要點.docx
評論
0/150
提交評論