高層建筑組成外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  本科生畢業(yè)設(shè)計(jì)(論文)</p><p><b>  外文資料翻譯</b></p><p>  文獻(xiàn)出處 Civil engineering magazine </p><p>  姓  名    游明堅(jiān)     </p><p>  學(xué)  號(hào)   40810503

2、0220   </p><p>  學(xué)  院    工程學(xué)院    </p><p>  專(zhuān)  業(yè)    土木工程    </p><p>  指導(dǎo)教師  曹秀玲  </p><p>  2012年 5月8日</p><p>  Components of Tall Buildi

3、ngs</p><p><b>  Abstract </b></p><p>  Materials and structural forms are combined to make up the various parts of a building, including the load-carrying frame, skin, floors, and p

4、artitions. The building also has mechanical and electrical systems, such as elevators, heating and cooling systems, and lighting systems. The superstructure is that part of a building above ground, and the substructure

5、and foundation is that part of a building below ground. </p><p>  The skyscraper owes its existence to two developments of the 19th century: steel skeleton construction and the passenger elevator. Steel as

6、a construction material dates from the introduction of the Bessemer converter in 1885.Gustave Eiffel (1832-1932) introduced steel construction in France. His designs for the Galerie des Machines and the Tower for the Par

7、is Exposition of 1889 expressed the lightness of the steel framework. The Eiffel Tower, 984 feet (300 meters) high, was the tallest struct</p><p>  Elisha Otis installed the first elevator in a department s

8、tore in New York in 1857.In 1889, Eiffel installed the first elevators on a grand scale in the Eiffel Tower, whose hydraulic elevators could transport 2,350 passengers to the summit every hour.</p><p>  Load

9、-Carrying Frame </p><p>  Until the late 19th century, the exterior walls of a building were used as bearing walls to support the floors. This construction is essentially a post and lintel type, and it

10、 is still used in frame construction for houses. Bearing-wall construction limited the height of building because of the enormous wall thickness required;for instance, the 16-story Monadnock Building built in the 1880’

11、s in Chicago had walls 5 feet (1.5 meters) thick at the lower floors. In 1883, William Le Baron Jen</p><p>  All tall buildings were built with a skeleton of steel until World War Ⅱ. After the war, the short

12、age of steel and the improved quality of concrete led to tall building being built of reinforced concrete. Marina Tower (1962) in Chicago is the tallest concrete building in the United States; its height—588 feet (179 me

13、ters)—is exceeded by the 650-foot (198-meter) Post Office Tower in London and by other towers. </p><p>  A change in attitude about skyscraper construction has brought a return to the use of the bearing wal

14、l. In New York City, the Columbia Broadcasting System Building, designed by Eero Saarinen in 1962,has a perimeter wall consisting of 5-foot (1.5meter) wide concrete columns spaced 10 feet (3 meters) from column center to

15、 center. This perimeter wall, in effect, constitutes a bearing wall. One reason for this trend is that stiffness against the action of wind can be economically obtained by using t</p><p><b>  3. Skin &

16、lt;/b></p><p>  The skin of a building consists of both transparent elements (windows) and opaque elements (walls). Windows are traditionally glass, although plastics are being used,especially in schools

17、where breakage creates a maintenance problem. The wall elements, which are used to cover the structure and are supported by it, are built of a variety of materials: brick, precast concrete, stone, opaque glass, plastics,

18、 steel, and aluminum. Wood is used mainly in house construction; it is not generally used fo</p><p>  4. Floors </p><p>  The construction of the floors in a building depends on the basic struct

19、ural frame that is used. In steel skeleton construction, floors are either slabs of concrete resting on steel beams or a deck consisting of corrugated steel with a concrete topping. In concrete construction, the floors a

20、re either slabs of concrete on concrete beams or a series of closely spaced concrete beams (ribs) in two directions topped with a thin concrete slab, giving the appearance of a waffle on its underside. The ki</p>

21、<p>  5. Mechanical and Electrical Systems</p><p>  A modern building not only contains the space for which it is intended (office, classroom, apartment) but also contains ancillary space for mechanical

22、 and electrical systems that help to provide a comfortable environment. These ancillary spaces in a skyscraper office building may constitute 25% of the total building area. The importance of heating, ventilating, electr

23、ical, and plumbing systems in an office building is shown by the fact that 40% of the construction budget is allocated to them. Be</p><p>  There have been attempts to incorporate the mechanical and electric

24、al systems into the architecture of building by frankly expressing them; for example, the American Republic Insurance Company Building(1965) in Des Moines, Iowa, exposes both the ducts and the floor structure in an organ

25、ized and elegant pattern and dispenses with the suspended ceiling. This type of approach makes it possible to reduce the cost of the building and permits innovations, such as in the span of the structure.</p><

26、p>  6. Soils and Foundations </p><p>  All building are supported on the ground, and therefore the nature of the soil becomes an extremely important consideration in the design of any building. The design

27、 of a foundation depends on many soil factors, such as type of soil, soil stratification, thickness of soil lavers and their compaction, and groundwater conditions. Soils rarely have a single composition; they generally

28、are mixtures in layers of varying thickness. For evaluation, soils are graded according to particle size, which inc</p><p>  Due to both the compaction and flow effects, buildings tend settle. Uneven settlem

29、ents, exemplified by the leaning towers in Pisa and Bologna, can have damaging effects—the building may lean, walls and partitions may crack, windows and doors may become inoperative, and, in the extreme, a building may

30、collapse. Uniform settlements are not so serious, although extreme conditions, such as those in Mexico City, can have serious consequences. Over the past 100 years, a change in the groundwater level</p><p> 

31、 The great variability of soils has led to a variety of solutions to the foundation problem. Where 4 firm soil exists close to the surface, the simplest solution is to rest columns on a small slab of concrete(spread fo

32、oting). Where the soil is softer, it is necessary to spread the column load over a greater area;in this case, a continuous slab of concrete(raft or mat) under the whole building is used.In cases where the soil near the s

33、urface is unable to support the weight of the building, piles</p><p>  The construction of a building proceeds naturally from the foundation up to the superstructure. The design process, however, proceeds fr

34、om the roof down to the foundation (in the direction of gravity). In the past, the foundation was not subject to systematic investigation. A scientific approach to the design of foundations has been developed in the 20th

35、 century. Karl Terzaghi of the United States pioneered studies that made it possible to make accurate predictions of the behavior of foundation</p><p>  Although there have been many advancements in buildin

36、g construction technology in general, spectacular achievements have been made in the design and construction of ultrahigh-rise buildings. </p><p>  The early development of high-rise buildings began with str

37、uctural steel framing. Reinforced concrete and stressed-skin tube systems have since been economically and competitively used in a number of structures for both residential and commercial purposes. The high-rise building

38、s ranging from 50 to 110 stories that are being built all over the United States are the result of innovations and development of new structural systems. </p><p>  Greater height entails increased column and

39、 beam sizes to make buildings more rigid so that under wind load they will not sway beyond an acceptable limit. Excessive lateral sway may cause serious recurring damage to partitions, ceilings, and other architectural d

40、etails. In addition, excessive sway may cause discomfort to the occupants of the building because of their perception of such motion. Structural systems of reinforced concrete, as well as steel, take full advantage of th

41、e inherent potent</p><p>  In a steel structure, for example, the economy can be defined in terms of the total average quantity of steel per square foot of floor area of the building. Curve A in Fig.1 repres

42、ents the average unit weight of a conventional frame with increasing numbers of stories. Curve B represents the average steel weight if the frame is protected from all lateral loads. The gap between the upper boundary an

43、d the lower boundary represents the premium for all lateral loads. The gap between the upper boundar</p><p>  7. Tube in tube</p><p>  Another system in reinforced concrete for office buildings

44、combines the traditional shear wall construction with an exterior framed tube. The system consists of an outer framed tube of very closely spaced columns and an interior rigid shear wall tube enclosing the central servic

45、e area. The system (Fig.2), known as the tube-in-tube system, made it possible to design the world’s present tallest (714 ft or 218 m) lightweight concrete building (the 52-story One Shell Plaza Building in Houston) for

46、t</p><p>  Systems combining both concrete and steel have also been developed, an example of which is the composite system developed by Skidmore, Owings & Merrill in which an exterior closely spaced fram

47、ed tube in concrete envelops an interior steel framing, thereby combining the advantages of both reinforced concrete and structural steel systems. The story One Shell Square Building in New Orleans is based on this syste

48、m. </p><p><b>  高層建筑組成</b></p><p><b>  1摘要</b></p><p>  材料和結(jié)構(gòu)形式結(jié)合在一起,成為建筑物的各個(gè)部分,包括的承載框架,外圍結(jié)構(gòu),地板和分區(qū)。大樓還設(shè)有電梯,加熱和冷卻系統(tǒng),如機(jī)械和電氣系統(tǒng),照明系統(tǒng)。上層結(jié)構(gòu)是地面以上建筑物部分,下部結(jié)構(gòu)地基和基礎(chǔ),是低

49、于地面建筑的一部分。</p><p>  摩天大樓之所以會(huì)存在,得益于19世紀(jì)的兩個(gè)發(fā)展:鋼骨架建設(shè)和乘客電梯。鋼材作為建筑材料是從貝西法在1885被發(fā)明開(kāi)始。艾菲爾在法國(guó)第一次介紹了建筑鋼材。他設(shè)計(jì)了1889年巴黎世界博覽會(huì)塔鋼框架很出色。艾菲爾鐵塔,高984英尺(300米),是由人建成的最高結(jié)構(gòu),一直沒(méi)有被超越,直到40年后的一系列美國(guó)摩天大樓。</p><p>  1889年沙奧的斯

50、為在紐約的百貨公司安裝了第一部電梯。巴黎的鐵塔每隔一小時(shí)可以運(yùn)送2350名乘客,艾菲爾鐵塔安裝了一個(gè)規(guī)模宏大的電梯,是有史以來(lái)的第一次。</p><p><b>  2 承重框架 </b></p><p>  直到19世紀(jì)末,建筑物的外墻一直被用作承重墻支持地板。這種結(jié)構(gòu)基本上是后門(mén)楣類(lèi)型的,它仍然用于住房建設(shè)的框架。軸承墻施工因建設(shè)需要巨大的墻壁厚度和高度而限制,例

51、如,建于1880年芝加哥的16層高莫納德諾克大廈,在較低樓層墻體高度已達(dá)5英尺(1.5米)厚。 1883年,威廉樂(lè)男爵(1832至1907年)支持鑄鐵列的鐵柱來(lái)支撐樓層??蚣芙Y(jié)構(gòu)由骨架建設(shè),鋼梁和柱組成,于1889年首次使用。作為骨架建設(shè)的成果,圍墻成為“玻璃幕墻”,而不是其他服務(wù)配套。砌體,直到1930年才用輕金屬和玻璃幕墻的使用。引入鋼材料后,建筑物的高度迅速增加。</p><p>  所有的高層都

52、是由鋼骨架建筑的,直到二戰(zhàn)為止。戰(zhàn)爭(zhēng)結(jié)束后,鋼和混凝土質(zhì)量的提高,促使高層鋼筋混凝土建筑的建造。濱海大廈(1962)在芝加哥是美國(guó)最高的混凝土建筑,其高度是588英尺(179米),超過(guò)在倫敦的辦公室大樓及其他塔。</p><p>  有關(guān)摩天大樓的承重墻的使用在態(tài)度上有了改變。在紐約市,埃羅·沙里寧設(shè)計(jì)于1962年的美國(guó)哥倫比亞廣播大樓,圍墻由5英尺(1.5米)范圍內(nèi)的混凝土柱組成,柱間距10英尺(3米

53、)。實(shí)際上,這圍墻構(gòu)成承重墻。造成這種趨勢(shì)的原因之一是建筑物的墻像一個(gè)管道可以有效地抵抗風(fēng)的作用;世貿(mào)大樓是另一個(gè)管道法的很好例子。相比之下,堅(jiān)固的框架或垂直支撐通常提供建筑的橫向穩(wěn)定。</p><p><b>  3 圍護(hù)結(jié)構(gòu)</b></p><p>  建筑物的圍護(hù)結(jié)構(gòu)由透明的窗戶和不透明的墻組成。 窗戶是傳統(tǒng)的玻璃,雖然塑料也被使用,尤其是在學(xué)校,破損

54、的嚴(yán)重的地方。墻上的材料的作用,是用來(lái)掩蓋結(jié)構(gòu)和它支持的,材料有磚,預(yù)制混凝土,石材,不透明的玻璃,塑料,鋼材,鋁。木材主要用于房屋建筑;它一般不用于商業(yè),工業(yè)和公共建筑等有火災(zāi)隱患的地方。 </p><p><b>  4 樓地面 </b></p><p>  建筑物的樓層的建設(shè),取決于所使用的基本結(jié)構(gòu)框架。鋼骨架建設(shè)中,地板是在鋼梁或波紋鋼組成的一個(gè)具體的平頂甲板

55、上的混凝土或者磚?;炷潦┕ぶ?,地板上混凝土梁或一系列密集的鋼筋混凝土梁在兩個(gè)方向(排骨)的混凝土或者磚配上薄混凝土板上,下面抹一層抹面。樓層種類(lèi)取決于支撐柱之間的距離或墻和空間的功能性。例如,在一座公寓樓,墻壁和列間距在12至18英尺(3.7米至5.5米)之間,最流行的是建設(shè)一個(gè)堅(jiān)實(shí)的無(wú)梁混凝土板。樓板底面作為它下面的空間上限。辦公大樓中使用波紋鋼地板,因?yàn)椴y鋼地板波紋由另一塊金屬板蓋上時(shí),可以形成電話線和電線管道。</p&g

56、t;<p><b>  5 機(jī)械電力系統(tǒng)</b></p><p>  如今的建筑不僅要包含必要的使用空間,也要包括機(jī)械、電力系統(tǒng)等的輔助空間,來(lái)營(yíng)造一個(gè)舒適的生活環(huán)境。這些輔助的空間可能占大樓總建筑面積的25%。一個(gè)辦公大樓中供暖、通風(fēng)、電力和衛(wèi)生設(shè)備系統(tǒng)預(yù)算額在實(shí)際建筑總預(yù)算額中的40%,說(shuō)明了它們?cè)诮ㄖ械闹匾?。許多建筑是密閉的,窗戶不能被打開(kāi),所以由機(jī)械系統(tǒng)要提供通風(fēng)設(shè)

57、備和空氣調(diào)節(jié)的設(shè)備。新鮮的空氣從中央換氣室由空氣調(diào)節(jié)器輸入。通風(fēng)管以及控制照明設(shè)備單元由懸掛在上面樓層結(jié)構(gòu)下面的天花板遮住了。提供動(dòng)力的電力線路和電話通訊線路也要在天花板里或也在樓地面結(jié)構(gòu)層中管道或?qū)Ь€管里。</p><p>  嘗試性地把機(jī)械、電力系統(tǒng)加入建筑物的建筑風(fēng)格中去,讓他們裸露在結(jié)構(gòu)的外面;比如美國(guó)保險(xiǎn)公司大樓的管道和樓地面結(jié)構(gòu)層有組織的、優(yōu)美的懸掛在天花板上。這些類(lèi)型的方法使建筑物的花費(fèi)盡可能的減少

58、了,也使結(jié)構(gòu)在結(jié)構(gòu)間距方面有了創(chuàng)新。 </p><p><b>  6土地和地基 </b></p><p>  所有建筑都靠在地面上的土壤支持,因此土壤的性質(zhì),成為任何一個(gè)建筑物的設(shè)計(jì)非常重要的考慮因素?;A(chǔ)的設(shè)計(jì)取決于許多方面,分層土壤,土壤盆和他們的壓實(shí)厚度,地下水條件,土壤等因素。土壤中很少有一個(gè)是單一組成的,他們一般都是在不同厚度層的混合物。根據(jù)評(píng)估,土層

59、的等級(jí)根據(jù)土分子的大小來(lái)劃分,依次是淤泥、粘土、沙、石子和巖石。一般來(lái)說(shuō),較大分子的土支撐的荷載要大。最堅(jiān)硬的巖石能夠支撐荷載是每平方米100噸,最軟的淤泥能夠支撐的荷載大約是每平方米0.25噸。所有地表以下的土都是處于受壓的狀態(tài),這些土承受與作用在它上面的土柱重量相等的壓力。許多土有彈性的性質(zhì)——他們被重載壓壞或卸載后又能恢復(fù)。土的彈性隨時(shí)間而改變,土層的變形在恒載作用下隨時(shí)間的增長(zhǎng)不斷地改變。一段時(shí)間后,假如加于土層上的荷載大于土自

60、然壓緊狀態(tài)下的重量,那么建筑物不會(huì)產(chǎn)生沉降。建筑物的重量可能會(huì)使土產(chǎn)生流動(dòng),經(jīng)常會(huì)發(fā)生土被擠出。</p><p>  由于壓實(shí)和流量的影響,建筑物往往會(huì)沉降。不均勻的沉降例如比薩斜塔,結(jié)果會(huì)使建筑物傾斜,墻和隔墻也可能會(huì)出現(xiàn)裂縫,窗戶和門(mén)會(huì)變形,甚至建筑會(huì)倒塌。均勻沉降不會(huì)這么的嚴(yán)重,但也可能出現(xiàn)危險(xiǎn)狀況,比如墨西哥的一些建筑,出現(xiàn)各種各樣的結(jié)果,過(guò)去一年里,地下水位發(fā)生了變化,使一些建筑下沉了3米。類(lèi)似的情況可

61、能發(fā)生在建造時(shí)也可能是建造后,所以小心的處理建筑物下的土層是非常重要的。</p><p>  土壤變化很大,所以出現(xiàn)了各種解決的方案。 堅(jiān)定土壤的表面,最簡(jiǎn)單的辦法是的用混凝土基礎(chǔ)。如果土壤是軟的,這樣的話整個(gè)建筑就可采用筏板基礎(chǔ)。假如表面土層不能夠支撐建筑物的重量,木結(jié)構(gòu)建筑、鋼結(jié)構(gòu)建筑、或者混凝土建筑應(yīng)該建造在堅(jiān)硬土層上。 </p><p>  建設(shè)一幢建筑物一般是從基礎(chǔ)開(kāi)始

62、,然后到上部結(jié)構(gòu)。但是設(shè)計(jì)的過(guò)程卻是從屋頂開(kāi)始到基礎(chǔ)。過(guò)去地基的處理不是一個(gè)系統(tǒng)的研究項(xiàng)目。到20世紀(jì),科學(xué)的地基設(shè)計(jì)方法,已經(jīng)發(fā)展起來(lái)了。美國(guó)的Karl Teraghi不斷進(jìn)行創(chuàng)造和研究,使土力學(xué)和土地勘測(cè)聯(lián)合起來(lái),使盡可能的準(zhǔn)確預(yù)測(cè)地基的活動(dòng)狀態(tài)。過(guò)去一個(gè)典型的地基破壞的例子是比薩斜塔,現(xiàn)在變得幾乎不存在了。地基仍然是建筑物中不可見(jiàn)的部分中費(fèi)用最大的。 </p><p>  雖然在建筑物的建造工藝上取得很多的

63、進(jìn)步,但在超高層建筑物的設(shè)計(jì)跟建造上,依然取得了驚人的成績(jī)。 </p><p>  最早的高層建筑的發(fā)展是從鋼結(jié)構(gòu)開(kāi)始的。鋼筋混凝土和薄殼筒體體系成為了許多住宅和商業(yè)建筑以節(jié)儉和竟?fàn)帪槟康牡慕Y(jié)構(gòu)。作為新結(jié)構(gòu)體系創(chuàng)新和發(fā)展的原地,美國(guó)到處都是50到110層的高層建筑。 </p><p>  巨大的高度使得柱和梁的尺寸越來(lái)越大,才能使建筑物更加堅(jiān)固,才能在風(fēng)荷載作用下其傾斜度超過(guò)限值。過(guò)多次地

64、側(cè)向擺動(dòng)可能會(huì)引起隔墻天花板和其它建筑部件損壞。除此之外,過(guò)大的擺動(dòng)也可能會(huì)給建筑物中的居住者帶來(lái)不安和恐懼,因?yàn)闀?huì)使他們有移動(dòng)的感覺(jué)。鋼筋混凝土結(jié)構(gòu)體系跟鋼結(jié)構(gòu)一樣,內(nèi)在的潛力使得建筑物非常堅(jiān)硬,所以不需要附加的強(qiáng)化擺動(dòng)限制。 </p><p>  一個(gè)鋼結(jié)構(gòu)中,比如,根據(jù)建筑物每平方米的樓層面積的總平均用量來(lái)表示它的經(jīng)濟(jì)性。表示一般的框架在沒(méi)有水平荷載的作用下鋼的平均重量。上邊界和下邊界之間的間距表示一般的梁

65、—柱框架重量。結(jié)構(gòu)工程師以發(fā)展結(jié)構(gòu)體系為目標(biāo)。 </p><p><b>  7框筒結(jié)構(gòu)</b></p><p>  辦公樓鋼筋混凝土中的另一個(gè)系統(tǒng)結(jié)合了傳統(tǒng)的剪力墻結(jié)構(gòu),框筒與外部。該系統(tǒng)由列間隔很近,室內(nèi)是剛性剪力墻管封閉的中央服務(wù)區(qū)外的框筒,被稱為筒中筒系統(tǒng),使用這種體系建造設(shè)計(jì)的建筑物是目前世界上最高的輕質(zhì)混凝土大樓,僅有35層的傳統(tǒng)簡(jiǎn)力墻結(jié)構(gòu)。</p&

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論