本文受兩項中華醫(yī)學會臨床醫(yī)學專項資金資助,基金編號13020120397和13040630448,并受第三軍醫(yī)大學青年人才基金項目資助,編號swh2013qn02.作者…_第1頁
已閱讀1頁,還剩7頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  腸促胰素與糖尿病</b></p><p>  吳綺楠 綜述 陳兵 審校</p><p>  QiNan Wu, Bing Chen*</p><p>  第三軍醫(yī)大學第一附屬醫(yī)院內分泌科,重慶,400038</p><p>  Endocrinology Department, the Fi

2、rst affiliated Hospital of the Third Military Medical University,</p><p>  ChongQing 400038, China</p><p><b>  通訊作者:陳兵</b></p><p>  E-mail:chenbing3@medmail.com.cn</p

3、><p>  Telephone:+86-23-68754138</p><p>  本文受兩項中華醫(yī)學會臨床醫(yī)學專項資金資助,基金編號:13020120397和13040630448,并受第三軍醫(yī)大學青年人才基金項目資助,編號:SWH2013QN02 。</p><p>  作者簡介:吳綺楠,男,1978.12-,副主任醫(yī)師,在讀博士,研究方向:糖尿病及其慢

4、性并發(fā)癥的防治</p><p>  通訊作者簡介:陳兵,男,1960.11-,主任醫(yī)師,教授,博士生導師,研究方向:增齡性內分泌代謝疾病的防治</p><p>  摘要:隨著胰高血糖素樣肽-1、二肽基肽酶-IV抑制劑以及胃轉流術在糖尿病治療領域的應用,越來越多的證據(jù)顯示糖尿病的發(fā)生發(fā)展與胃腸道分泌的一組激素-腸促胰素有關,本文將對腸促胰素在糖尿病中的研究進展和爭論做一綜述。</p&g

5、t;<p><b>  Abstract</b></p><p>  With the application of glucagon like peptide-1, dipeptidyl peptidase-IV inhibitor and gastric bypass in the treatment of diabetes, more and more evidence

6、reveals that diabetes is associated with a group of gut secretion hormone which called as incretin. This article reviews recent advances and controversies of incretins in diabetes.</p><p><b>  概述</b

7、></p><p>  腸促胰素(incretin)是一類由胃腸道K細胞和L細胞分泌的一類胃腸激素,其中主要包括胰高血糖素樣肽-1(glucagon like peptide-1, GLP-1),葡萄糖依賴性促胰島素激素(glucose-dependent insulinotropic polypeptide, GIP)以及胃腸釋放肽(Gastrin-releasing peptide GRP)等。早在20

8、世紀五十年代,有學者發(fā)現(xiàn)較之靜脈注射葡萄糖而言,口服葡萄糖刺激的胰島素分泌更顯著,這種效應稱之為腸促胰素效應(incretin effect),隨后發(fā)現(xiàn),該效應所產(chǎn)生的胰島素占到了生理分泌的胰島素一半左右,其中以GLP-1促胰島素分泌效應最強[1]。而對于GLP-1的研究也是最多的,在GLP-1的研究基礎上,學者們提出胃腸-胰島素軸,進一步的研究發(fā)現(xiàn)GLP-1不僅具有調控進食后胰島素的分泌,還可抑制胰高血糖素的分泌,并參與下丘腦對食欲的

9、控制,延緩胃排空,減輕體重等功能。其中,GLP-1由胰高血糖素原產(chǎn)生,生理情況下GLP-1濃度較低,是因為其產(chǎn)生后迅速被二肽基肽酶-IV(dipeptidyl peptida</p><p>  Incretin與胰島細胞功能和數(shù)量</p><p>  胰島β細胞在數(shù)量和功能上的缺陷是1型糖尿病和2型糖尿病共同的重要發(fā)病機制之一,β細胞對葡萄糖和incretin如 GLP-1和GIP的反應

10、減弱時糖尿病的主要特征[3]。其中GLP-1激動劑對胰島β細胞功能和數(shù)量有顯著影響,其中包括:1)有效促進胰島細胞的增殖,減少胰島β細胞的凋亡率:由于GLP-1受體屬于α跨膜受體,通過激活Gsα蛋白,可進一步激活多條促進胰島β細胞增殖的信號通路,當小鼠被敲除Gsα后,可表現(xiàn)出胰島β細胞在數(shù)量上和功能上的缺失[4]。GLP-1尚可作用于FoxO1, PDX-1, Foxa2等一些對胰島β細胞數(shù)量和功能有影響的轉錄因子[5,6]。在健康小鼠

11、中,2周的Exendin-4治療可增加1.76倍的胰島體積[7],相似的是,每日2次的Exendin-4治療較之未治療組的小鼠,胰島增殖速度達到2倍[8]。在Zucker大鼠體內,也得到了相似的結論[9]。進一步的研究發(fā)現(xiàn),GLP-1促進胰島細胞增殖和防止凋亡主要的信號通路包括PKA,PI3K-Akt[10],雖然這是GLP-1實現(xiàn)其生理功能研究最多的2個信號途徑,而近年多項研究均提示GLP-1通過這兩條信號途徑促進胰</p>

12、;<p>  以上的研究說明,GLP-1主要通過促進胰島細胞增殖,減少其凋亡,誘導胰腺外分泌細胞分化成為胰島素分泌細胞對胰島細胞數(shù)量和功能產(chǎn)生影響,但這些過程涉及的具體機制尚需進一步研究。如由于wnt途徑是典型的致癌信號途徑,GLP-1激活wnt信號途徑在促進胰島細胞增殖及抑制凋亡中的作用可能是以后的研究熱點,糖尿病和一些癌癥在發(fā)病機制上是否有相同之處尚需進一步探討。再如無論是尸體來源、動物來源還是干細胞來源,可用于胰島移

13、植的細胞來源非常有限,GLP-1可促進胰腺導管細胞分化為胰島樣細胞的功能可為胰島移植提供另一個有希望的細胞來源,GLP-1可增加移植的胰島細胞存活率和功能也為未來胰島移植治療糖尿病帶來了新的希望。此外,長期單獨使用GLP-1很可能打破機體代謝平衡,由于GIP,GLP-1和胰高血糖素均參與了血糖和胰島素的調控,目前已經(jīng)有學者制成GLP-1,GIP和胰高血糖素三聯(lián)制劑并將之用于糖尿病動物和人并取得了良好的療效,這也是今后的研究熱點之一[29

14、]。</p><p>  Incretin與1型糖尿病</p><p>  1型糖尿病是一種自身免疫疾病,T淋巴細胞可自發(fā)攻擊本身的胰島β細胞導致其凋亡,造成胰島素分泌的絕對缺乏,大多數(shù)患者需要胰島素維持生命,而且在1型糖尿病患者中,仍然存在著胰高血糖素異常和胃排空異常。由于一系列針對2型糖尿病的臨床前和基礎研究中發(fā)現(xiàn)GLP-1可減少胰島β細胞凋亡和誘導胰島β細胞增殖的作用,因此對于1型糖

15、尿病來說,incretin制劑尤其是GLP-1有著潛在的重要治療價值,可有效對抗由自身免疫所誘導的胰島β細胞凋亡。其次,GLP-1可減少胰高血糖素的分泌,抑制胃排空,有助于有效的降低血糖,這也有助于1型糖尿病患者病情進展的控制。在NOD小鼠的研究中,人們發(fā)現(xiàn)持續(xù)的輸注GLP-1可增加胰島細胞再生,減少其凋亡,延緩1型糖尿病發(fā)展歷程[30]。但作者認為,單一的GLP-1治療在人類中不太可能取得類似的效應,聯(lián)合治療仍然是糖尿病治療的基本思路

16、,當在NOD小鼠中將GLP-1聯(lián)合其他藥物如抗-CD3,利索茶堿,抗人胸腺淋巴細胞血清以及胃泌素時,可明顯改善或逆轉糖尿病,尤其是在Exendin-4聯(lián)合抗人胸腺淋巴細胞血清后NOD小鼠的糖尿病改善率達到了88%[30]。有趣的是,有學者發(fā)現(xiàn)抗</p><p>  綜合以上,迄今為止的證據(jù)表明,GLP-1受體激動劑可以促進1型糖尿病患者β細胞的恢復和血糖控制。GLP-1激動劑與一些免疫調節(jié)劑的聯(lián)用可更好的保護β細

17、胞和改善血糖控制。雖然缺乏較大規(guī)模的臨床試驗證實,但可以想象的是,GLP-1激動劑很有可能得到美國FDA批準在1型糖尿病患者中使用。</p><p>  Incretin與2型糖尿病</p><p>  GLP-1和GIP分泌和對胰島素的反應缺陷是2型糖尿病的特征之一[36],GLP-1的分泌缺陷以及GLP-1對胰島素反應的缺陷(GLP-1抵抗)存在于很多2型糖尿病患者中,這是補充GLP-

18、1類似物和GLP-1受體激動劑的基礎,多項研究顯示,補充GLP-1和GLP-1受體激動劑可以改善2型糖尿病試驗動物和人的胰島素分泌,其機制仍然是GLP-1具有葡萄糖依賴性促胰島素分泌效應(glucose-stimulated insulin secretion GSIS),抑制胃排空,抑制胰高血糖素以及改善胰島β細胞功能[37]。眾所周知,胰島素抵抗在2型糖尿病發(fā)病中的重要一環(huán),炎癥反應是胰島素抵抗的原因之一,Lee及同事發(fā)現(xiàn)GLP-1

19、可減輕脂肪細胞中的炎癥反應,并認為有助于改善胰島素抵抗[38]。另有研究發(fā)現(xiàn)每日皮下注射利拉魯肽可上調ob/ob小鼠海馬的Mash1基因表達,并通過上調脂聯(lián)素(一種能改善胰島素抵抗、高血糖、高血脂等代謝紊亂的脂肪因子),PPARα, PPARγ的表達,減輕肝臟和外周的胰島素抵抗,改善血糖控制和血脂[39,40]。有學者通過給小鼠注射表達Exendin-4的腺病毒,發(fā)現(xiàn)其</p><p>  綜合以上,incret

20、in在2型糖尿病發(fā)病機制和病理生理進展中可能占有重要地位,2型糖尿病中存在GLP-1的分泌和抵抗,大規(guī)模的臨床試驗已證實GLP-1激動劑和DPP-IV抑制劑應用于2型糖尿病的療效與安全,胃腸道手術治療2型糖尿病的機制也主要在于激動incretin,但仍需大規(guī)模隨機對照的臨床研究以明確其長期效應和安全性,而GIP在2型糖尿病中的作用和地位尚需進一步研究以證實。</p><p><b>  展望</b

21、></p><p>  腸促胰素為基礎的治療在很大程度上已經(jīng)改變了人們對糖尿病的認識和治療。對腸促胰素的基礎研究也不斷的發(fā)現(xiàn)其對于胰島細胞增殖、凋亡、分化的影響,以上可能會對如何維持胰島細胞數(shù)量和功能以及胰島移植的細胞來源提供可能的方向。對GLP-1聯(lián)合免疫調節(jié)劑在1型糖尿病動物及患者中的研究正不斷的證明其對1型糖尿病的療效,并有助于更好的了解1型糖尿病發(fā)病的機制。2型糖尿病患者中廣泛存在著GLP-1和GI

22、P的分泌異常和作用異常,GLP-1類似物和受體激動劑可有效降低2型糖尿病患者空腹和餐后血糖水平而不引起低血糖。除了控制血糖,還有研究發(fā)現(xiàn)GLP-1為基礎的化合物也可有效降低體重,減少心血管疾病的危險因素,糾正能量代謝紊亂。這也有助于人們理解并發(fā)現(xiàn)2型糖尿病的發(fā)病機制,找到新的防治靶點。</p><p><b>  參考文獻</b></p><p>  Drucker

23、DJ. Incretin action in the pancreas: potential promise, possible perils, and pathological pitfalls [J]. Diabetes. 2013; 62(10):3316-3323.</p><p>  Campbell JE, Drucker DJ. Pharmacology, physiology, and mecha

24、nisms of incretin hormone action [J]. Cell Metab. 2013; 17(6):819-837. </p><p>  Hodson DJ, Mitchell RK, Bellomo EA, et al. Lipotoxicity disrupts incretin-regulated human β cell connectivity [J]. J

25、 Clin Invest. 2013; 123(10):4182-4194.</p><p>  Xie T, Chen M, Zhang QH, et al.Beta cell-specific deficiency of the stimulatory G protein alpha-subunit Gsalpha leads to reduced beta cell mass and insulin-def

26、icient diabetes [J]. Proc Natl Acad Sci U S A. 2007; 104(49):19601-19606.</p><p>  Buteau J, Spatz ML, Accili D. Transcription factor FoxO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell ma

27、ss [J]. Diabetes. 2006; 55(5):1190-1196.</p><p>  G. Skoglund, M.A. Hussain, G.G. Holz, Glucagon-like peptide 1 stimulates insulin gene promoter activity by protein kinase A-independent activation of the rat

28、 insulin I gene cAMP response element[J]. Diabetes. 2000; 49(7):1156-1164.</p><p>  Stoffers DA, Kieffer TJ, Hussain MA, et al., Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeo

29、domain protein IDX-1 and increase islet size in mouse pancreas[J]. Diabetes. 2000; 49(5):741-748.</p><p>  Li Y, Cao X, Li LX, et al., Beta-Cell Pdx1 expression is essential for the glucoregulatory, prolifer

30、ative, and cytoprotective actions of glucagon-like peptide-1[J]. Diabetes. 2005; 54(2):482-491.</p><p>  Sturis J, Gotfredsen CF, Romer J, et al. GLP-1 derivative liraglutide in rats with beta-cell deficienc

31、ies: influence of metabolic state on beta-cell mass dynamics [J]. Br J Pharmacol, 2003, 140(1): 123-132.</p><p>  Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas [J]. Pharm

32、acol Ther, 2007, 113(3): 546-593.</p><p>  Liu Z, Habener JF. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation [J]. J Biol

33、Chem. 2008; 283(13):8723-8735.</p><p>  Xiong X, Shao W, Jin T. New insight into the mechanisms underlying the function of the incretin hormone glucagon-like peptide-1 in pancreatic β-cells: the involve

34、ment of the Wnt signaling pathway effector β-catenin[J]. Islets. 2012 ;4(6):359-365.</p><p>  Cornu M, Modi H, Kawamori D, et al. Glucagon-like peptide-1 increases beta-cell glucose competence and proliferat

35、ion by translational induction of insulin-like growth factor-1 receptor expression[J]. J Biol Chem, 2010, 285(14): 10538-10545.</p><p>  Rankin MM, Kushner JA. Adaptive beta-cell proliferation is severely re

36、stricted with advanced age [J]. Diabetes. 2009;58(6):1365-1372.</p><p>  Li Y, Hansotia T, Yusta B,et al. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis[J]. J Biol Chem. 2003; 278(1

37、):471-478.</p><p>  Yusta B, Baggio LL, Estall JL, et al. GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress[J]. Cell Metab. 2006;4(5):391-

38、406.</p><p>  Tsunekawa S, Yamamoto N, Tsukamoto K, et al. Protection of pancreatic beta-cells by exendin-4 may involve the reduction of endoplasmic reticulum stress; in vivo and in vitro studies[J]. J Endoc

39、rinol. 2007; 193(1):65-74.</p><p>  Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets [J]. Endocri

40、nology. 2003; 144(12):5149-5158.</p><p>  Favaro E, Granata R, Miceli I, et al. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditio

41、ns, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways[J]. Diabetologia. 2012; 55(4):1058-1070. </p><p>  Johnson JD, Han

42、Z, Otani K, et al. RyR2 and calpain-10 delineate a novel apoptosis pathway in pancreatic islets [J]. J Biol Chem, 2004, 279(23): 24794-24802.</p><p>  Zhou J, Wang X, Pineyro MA, et al. Glucagon-like peptide

43、 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells [J]. Diabetes. 1999;48(12):2358-2366.</p><p>  Xu G, Kaneto H, Lopez-Avalos MD, et al., GLP-1/exendin-4 facilitates

44、beta-cell neogenesis in rat and human pancreatic ducts [J]. Diabetes Res Clin Pract. 2006; 73(1):107-110.</p><p>  Suarez-Pinzon WL, Lakey JR, Rabinovitch A..Combination therapy with glucagon-like peptide-1

45、and gastrin induces beta-cell neogenesis from pancreatic duct cells in human islets transplanted in immunodeficient diabetic mice [J]. Cell Transplant. 2008; 17(6):631-640.</p><p>  Suarez-Pinzon WL, Rabinov

46、itch A. Combination therapy with a dipeptidyl peptidase-4 inhibitor and a proton pump inhibitor induces β-cell neogenesis from adult human pancreatic duct cells implanted in immunodeficient mice [J]. Cell Transplant. 201

47、1; 20(9):1343-1349.</p><p>  Gier B, Matveyenko AV, Kirakossian D, et al. Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dyspl

48、astic lesions and chronic pancreatitis in the Kras(G12D) mouse model[J]. Diabetes. 2012; 61(5):1250-1262.</p><p>  Fung M, Thompson D, Shapiro RJ, et al.Effect of glucagon-like peptide-1 (7-37) on beta-cell

49、function after islet transplan-tation in type 1 diabetes [J]. Diabetes Res Clin Pract, 2006, 74 (2):189-193.</p><p>  Gault, Harte. Effects of the novel (pro3) GIP antagonist and exendin(9-39) amide on GIP-

50、and GLP-1-induced cyclic AMP generation, insulin secretion and postprandial insulin release in obese diabetic(ob/ob) mice: evidence that GIP is the major physiological incretin. Diabetologia[J].2003,46(2):222-230.</p&

51、gt;<p>  Fukami A, Seino Y, Ozaki N, et al. Ectopic expression of GIP in pancreatic β-cells maintains enhanced insulin secretion in mice with complete absence of proglucagon-derived peptides [J]. Di

52、abetes. 2013; 62(2):510-518.</p><p>  Finan B, Ma T, Ottaway N, Müller TD, et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans[J]. Sci Transl Med. 2013; 5

53、(209):209ra151.</p><p>  Ogawa N, List JF, Habener JF,et al. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4[J], Diabetes. 2004; 53(7):1700-1705.</p>

54、<p>  Sherry NA, Chen W, Kushner JA, et al. Exendin-4 improves reversal of diabetes in NOD mice treated with anti-CD3 monoclonal antibody by enhancing recovery of beta-cells[J]. Endocrinology. 2007;148(11):5136-514

55、4.</p><p>  Ávila Dde L, Araújo GR, Silva M, et al. Vildagliptin ameliorates oxidative stress and pancreatic beta cell destruction in type 1 diabetic rats [J]. Arch Med Res. 2013; 44(3):1

56、94-202.</p><p>  Rother KI, Spain LM, Wesley RA,et al. Effects of exenatide alone and in combination with daclizumab on beta-cell function in long-standing type 1 diabetes[J]. Diabetes Care. 2009;32(12):2251

57、-2257. </p><p>  Garg SK, Moser EG, Bode BW, et al. Effect of sitagliptin on post-prandial glucagon and GLP-1 levels in patients withtype 1 diabetes: investigator-initiated, double-blind, randomized, placebo

58、-controlled trial [J]. Endocr Pract. 2013; 19(1):19-28.</p><p>  Kielgast U, Krarup T, Holst JJ,et al. Four weeks of treatment with liraglutide reduces insulin dose without loss of glycemic control in type 1

59、 diabetic patients with and without residual beta-cell function [J]. Diabetes Care. 2011; 34(7):1463-1468.</p><p>  Pathak V, Vasu S, Flatt PR, et al. Effects of chronic exposure of clonal β-cells to el

60、evated glucose and free fatty acids on incretin receptor gene expression and secretory responses to GIP and GLP-1[J]. Diabetes Obes Metab. 2013 Oct 26.</p><p>  Ahrén B. GLP-1 for type 2 diabe

61、tes [J]. Exp Cell Res 2011;317 (9):1239–1245.</p><p>  Lee YS, Park MS, Choung JS, et al. Glucagon-like peptide-1 inhibits adipose tissue macrophage infiltration and inflammation in an obese mouse model of d

62、iabetes [J]. Diabetologia 2012;55(9):2456-2468.</p><p>  Li L, Miao Z, Liu R, et al. Liraglutide improves hippocampal synaptic plasticity associated with increased expression of Mash1 in ob/ob mice [J]. Int

63、J Obes (Lond) 2013; 37(5):678-684.</p><p>  Li L, Miao Z, Liu R, et al. Liraglutide prevents hypoadiponectinemia-induced insulin resistance and alterations of gene expression involved in glucose and lipid me

64、tabolism[J]. Mol Med 2011; 17(11-12):1168-1178.</p><p>  Samson SL, Gonzalez EV, Yechoor V, et al. Gene therapy for diabetes: metabolic effects of helper-dependent adenoviral exendin 4 expression in a diet-i

65、nduced obesity mouse model [J]. Mol Ther 2008;16(11):1805-1812.</p><p>  Shiraishi D, Fujiwara Y, Komohara Y,et al. Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 acti

66、vation[J]. Biochem Biophys Res Commun 2012;425(2):304-308.</p><p>  vegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation an

67、d restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis[J]. S Liver Int 2011; 31(9):1285-1297. </p><p>  Buteau J.GLP-1 receptor signaling: effects on pancrea

68、tic beta-cell proliferation and survival [J]. Diabetes Metab 2008; 34 Suppl 2:S73-77.</p><p>  Fehse F, Trautmann M, Holst JJ, et al. Exenatide augments first- and second-phase insulin secretion in response

69、to intravenous glucose in subjects with type 2 diabetes [J]. J Clin Endocrinol Metab.2005;90 (11):5991–5997. </p><p>  Tourrel C, Bailbe D, Lacorne M, Meile MJ, et al. Persistent improvement of typ

70、e 2 diabetes in the Goto-Kakizaki rat model by expansion of the beta-cell mass during the prediabetic period with glucagon-like peptide-1 or exendin-4[J]. Diabetes. 2002; 51 (5):1443–1452.</p><p> 

71、 Ryan GJ, Foster KT, Jobe LJ. Review of the therapeutic uses of liraglutide[J]. Clin Ther. 2011; 33 (7):793–811.</p><p>  Zinman B, Schmidt WE, Moses A, et al. Achieving a clinically relevant composite

72、outcome of an HbA1c of <7% without weight gain or hypoglycaemia in type 2 diabetes: a meta-analysis of the liraglutide clinical trial programme[J]. Diabetes Obes Metab.2012; 14 (1):77–82.</p><p>  Mu

73、rphy CE. Review of the safety and efficacy of exenatide once weekly for the treatment of type 2 diabetes mellitus [J]. Ann Pharmacother.2012; 46 (6):812–821.</p><p>  Macconell L, Pencek R, Li Y, et al.

74、 Exenatide once weekly: sustained improvement in glycemic control and cardiometabolic measures through 3 years [J]. Diabetes Metab Syndr Obes. 2013; 6:31–41.</p><p>  Garbar AJ. Long-acting glucago

75、n-like peptide 1receptor agonists: A review of their efficacy and tolerability [J]. Diabetes Care. 2011; 34 Suppl 2:S279–284.</p><p>  Buse JB, Bergenstal RM, Glass LC, et al. Use of twice-daily exenatide in

76、 Basal insulin-treated patients with type 2 diabetes: a randomized, controlled trial [J]. Ann Intern Med.2011;154 (2):103–112.</p><p>  Deacon CF, Ahrén B. Physiology of incretins in health and dis

77、ease [J]. Rev Diabet Stud 2011;8(3):293–306.</p><p>  Scirica BM, Bhatt DL, Braunwald E,et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus[J]. N Engl J Med. 2013; 369(14

78、):1317-1326. </p><p>  White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes [J]. N Engl J Med. 2013; 369(14):1327-1335.</p><p>  Schee

79、n AJ, De Flines J, De Roover A, et al. Bariatric surgery in patients with type 2 diabetes: benefits, risks, indications and perspectives [J]. Diabetes Metab. 2009; 35(6 Pt 2):537-543. </p><p>  Neff KJ, O

80、9;Shea D, le Roux CW. Glucagon like peptide-1 (GLP-1) dynamics following bariatric surgery: a Signpost to a new frontier[J]. Curr Diabetes Rev. 2013; 9(2):93-101.</p><p>  Holst JJ, Knop FK, Vilsbøll T,

81、 et al. Loss of incretin effect is a specific, important, and early characteristic of type 2 diabetes. Diabetes Care 2011; 34(Suppl. 2):S251–257.</p><p>  Meier JJ, Nauck MA. Is the diminished incretin effec

82、t in type 2 diabetes just an epi-phenomenon of impaired β-cell function[J]. Diabetes 2010; 59 (5):1117–1125.</p><p>  Canivell S, Ruano EG, Sisó-Almirall A, et al. Gastric inhibitory polypeptide recepto

83、r methylation in newly diagnosed, drug-naïve patients with type 2 diabetes: a case-control study [J]. PLoS One. 2013; 8(9):e75474.</p><p>  Fonseca VA, Zinman B, Nauck MA, et al. Confronting the type 2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論