版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、一、英文原文:一、英文原文:AconfigurablemethodfmultistylelicenseplaterecognitionAutomaticlicenseplaterecognition(LPR)hasbeenapracticaltechniqueinthepastdecades.Numerousapplicationssuchasautomatictollcollectioncriminalpursuittrafficla
2、wenfcementhavebeenbenefitedfromit.AlthoughsomenoveltechniquesfexampleRFID(radiofrequencyidentification)WSN(wirelesssenswk)etc.havebeenproposedfcarIDidentificationLPRonimagedataisstillanindispensabletechniqueincurrentinte
3、lligenttransptationsystemsfitsconveniencelowcost.LPRisgenerallydividedintothreesteps:licenseplatedetectionactersegmentationacterrecognition.ThedetectionsteproughlyclassifiesLPnonLPregionsthesegmentationstepseparatesthesy
4、mbolsactersfromeachotherinoneLPsothatonlyaccurateoutlineofeachimageblockofactersisleftftherecognitiontherecognitionstepfinallyconvertsgreylevelimageblockintoacterssymbolsbypredefinedrecognitionmodels.AlthoughLPRtechnique
5、hasalongresearchhistyitisstilldrivenfwardbyvariousarisingdemsthemostfrequentoneofwhichisthevariationofLPstylesfexample:(1)Appearancevariationcausedbythechangeofimagecapturingconditions.(2)Stylevariationfromonenationtoano
6、ther.(3)StylevariationwhenthegovernmentreleasesnewLPfmat.WesummedthemupintofourfactsnamelyrotationanglelinenumberactertypefmataftercomprehensiveanalysesofmultistyleLPacteristicsonrealdata.Generallyspeakinganychangeofthea
7、bovefourfactscanresultinthechangeofLPstyleappearancethenaffectthedetectionsegmentationrecognitionalgithms.IfoneLPhasalargerotationanglethesegmentationrecognitionalgithmsfhizontalLPmaynotwk.Iftherearemethanoneacterlinesin
8、oneLPadditionallineseparationalgithmisneededbefeasegmentationprocess.Withthevariationofactertypeswhenweapplythemethodfromonenationtoanothertheabilitytoredefinetherecognitiondetection.InRef.Kimetal.usedanSVMtotraintexture
9、classifierstodetectimageblockthatcontainsLPpixels.InRef.theauthsusedGabfilterstoextracttexturefeaturesinmultiscalesmultiientationstodescribethetexturepropertiesofLPregions.InRef.ZhangusedXYderivativefeaturesgreyvaluevari
10、anceAdaboostclassifiertoclassifyLPnonLPregionsinanimage.InRefs.waveletfeatureanalysisisappliedtoidentifyLPregions.Despitethegoodperfmanceofthesemethodsthecomputationcomplexitywilllimittheirusability.Inadditiontexturebase
11、dalgithmsmaybeaffectedbymultilingualfacts.MultilineLPsegmentationalgithmscanalsobeclassifiedintothreeclassesnamelyalgithmsbasedonprojection,binarizationglobaloptimization.Intheprojectionalgithmsgradientcolprojectiononver
12、ticalientationwillbecalculatedatfirst.The“valleys”ontheprojectionresultareregardedasthespacebetweenactersusedtosegmentactersfromeachother.Segmentedregionsarefurtherprocessedbyverticalprojectiontoobtainpreciseboundingboxe
13、softheLPacters.SincesimplesegmentationmethodsareeasilyaffectedbytherotationofLPsegmentingtheskewedLPbecomesakeyissuetobesolved.Inthebinarizationalgithmsgloballocalmethodsareoftenusedtoobtainfegroundfrombackgroundthenregi
14、onconnectionoperationisusedtoobtainacterregions.Inthemostrecentwklocalthresholddeterminationslidewindowtechniquearedevelopedtoimprovethesegmentationperfmance.Intheglobaloptimizationalgithmsthegoalisnottoobtaingoodsegment
15、ationresultfindependentactersbuttoobtainacompromiseofacterspatialarrangementsingleacterrecognitionresult.HiddenMarkovchainhasbeenusedtofmulatethedynamicsegmentationofactersinLP.Theadvantageofthealgithmisthattheglobalopti
16、mizationwillimprovetherobustnesstonoise.thedisadvantageisthatprecisefmatdefinitionisnecessarybefeasegmentationprocess.actersymbolrecognitionalgithmsinLPRcanbecategizedintolearningbasedonestemplatematchingones.Fthefmerone
17、artificialneuralwk(ANN)isthemostlyusedmethodsinceitisprovedtobeabletoobtainverygoodrecognitionresultgivenalargetrainingset.AnimptantfactintraininganANNrecognitionmodelfLPistobuildreasonablewkstructurewithgoodfeatures.SVM
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于先驗(yàn)知識的車牌識別畢業(yè)論文外文翻譯
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 汽車車牌識別系統(tǒng)畢業(yè)論文(帶外文翻譯)
- 基于matlab車牌識別畢業(yè)論文
- 畢業(yè)論文---車牌識別算法調(diào)研
- 畢業(yè)論文----車牌識別系統(tǒng)的設(shè)計(jì)
- 外文資料翻譯---車牌識別
- 車牌識別設(shè)計(jì)與實(shí)現(xiàn)(畢業(yè)論文)
- 射頻識別技術(shù)簡介畢業(yè)論文外文翻譯
- 車牌字符識別畢業(yè)設(shè)計(jì)(含外文翻譯)
- 交通車牌識別系統(tǒng)畢業(yè)論文
- 庫存控制的基本方法畢業(yè)論文外文翻譯
- 畢業(yè)設(shè)計(jì)----bp神經(jīng)網(wǎng)絡(luò)方法對車牌照字符的識別(含外文翻譯)
- 車牌定位與識別的設(shè)計(jì)與實(shí)現(xiàn)-畢業(yè)論文
- 車牌識別中字符分割算法的研究與實(shí)現(xiàn)畢業(yè)論文
- lpr系統(tǒng)的車牌字符分割方法研究畢業(yè)論文
- 基于數(shù)字圖像處理的車牌定位與識別畢業(yè)論文
- 鍛造畢業(yè)論文外文翻譯
- ,畢業(yè)論文外文翻譯.pdf
評論
0/150
提交評論