數(shù)據(jù)挖掘畢業(yè)論文外文翻譯_第1頁(yè)
已閱讀1頁(yè),還剩5頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、外文文獻(xiàn)原文外文文獻(xiàn)原文DataMining2UsagescenariosDataminingiswidelyusedinarangeofscientificdisciplinesbusinessscenarios.SomenotewthyexamplesincludefindingsintheareasofdatabasemanagementmachinelearningBayesianinferenceknowledgegainfe

2、xpertsystemsfuzzylogicneuralwksgeicalgithms.Examplesineverydaybusinessscenariosincludedatabasemarketingfairlinespaneldataresearchaswellasthecreationofcustomizedtradepublicationsbasedonsubscriberdatafhundredsofdifferentus

3、ergroups.FrawleyPiatetskyShapiro(Frawleyetal.99)offeradetailedoverviewoffurtherareasofusage.Grossmarginanalysisisanotherinterestingfieldofresearchindatamining.Withthehelpofmoderncostaccountingsoftwarecompaniescanperfmmul

4、tidimensionalanalysisonindividualincomeitems.Fig.2listsafewsamplequestionsrelatedtothistopic.Duetothenumerousreferenceobjects(e.g.productscustomerssaleschannelsregions)theresultingnumberofobjectsthatneedtobeexaminedcontr

5、ollersrequiremethodsthatautomaticallyidentifydatapatterns.Inthiscasethesepatternsareacombinationofattributevalues(e.g.“DIYstes”“powerdrills”inFig.1)aswellasmeasures(e.g.grossmargin).Acompanythatdevelopsadataminingprogram

6、mustalsoconsiderthelargevolumesofdatainvolved.Eveninasizecompanyfexampleitiscommonthatseveralhundredthousitemsflowintoamonthlyincomestatement.CaseBasedReasoning(CBR)isoneinterestingexampleofhowdataminingmachinelearningco

7、uldwktogether.CBRcomponentsattempttotracecurrentquestionstoproblemsthathavealreadybeensolvedinthepast.Helpdeskswhichassistinclarifyingthequestionsacustomerhasaboutpurchasedproductsareonepracticalusageofthistypeofprocedur

8、e.Whilesomecompaniesusehelpdeskstosuppttheirtelephonehotlinesothersgivetheircustomersdirectaccessthrougharemotedatatransfer.Dataminingcanbeveryvaluableinthiscontextbecauseitconsolidatestheinfmationgatheredinthoussofindiv

9、idualhisticalcasesintokeyfindings.Theadvantageofthisprocedureistheshterprocessofsearchingfprecedentswhichcanbeusedtoanswerthecurrentcustomer’squestion.3MethodsTherearemanydifferenttypesofmethodstoanalyzeclassifydata.Some

10、commonmethodsincludeclusteranalysisBayesianinferenceaswellasinductivelearning.Clusteranalysissignificanttakeacompletelydifferentapproach.Initiallyeachobjectislocatedinitsowncluster.Theobjectshoweverarethencombinedsuccess

11、ivelysothatonlythesmallestlevelofhomogeneityislostineachstep.Wecaneasilypresenttheresultinghierarchyofnestedclustersinasocalleddendrogram.3.1.2ConceptualclusteringAsdescribedabovetraditionalfmsofclusteranalysiscanidentif

12、ygroupsofsimilarobjectsbutcannotdescribetheseclassesbeyondasimplelistoftheindividualobjects.Theobjectiveofmanyusagescenarioshoweveristoacterizetheexistingstructuresthatareburiedamongthevolumesofdata.Insteadofrepresenting

13、objectclassesthroughsimplylistingtheirobjectsconceptualclustersintentionallydescribethemusingtermswhichclassifytheindividualobjectsthroughrules.Agroupoftheserulesfmsasocalledconcept.Abasicexampleofaconceptisaprogramthata

14、utomaticallylogicallylinksindividualattributevalues.Advancedsystemscanevenestablishconceptsconcepthierarchieswithclassificationrules.Thedifferentconceptsinpartitionalmethodsofconceptualclusteringcompetewitheachother.Ulti

15、matelywehavetochoosetheclusteringconceptthatbestmeetstheperfmancecriteriafaspecificmethod.Someperfmancecriteriaincludethesimplicityoftheconcept(basedonthenumberofattributesinvolved)thediscriminatypower(asthenumberofvaria

16、blesthathavevaluesdonotoverlapbeyondthedifferentobjectclasses.)Similartotraditionalclusteranalysistherearealsohierarchicaltechniquesthatfmclassificationtreesinatopdownapproach.Asdescribedabovethebestclassificationinterms

17、ofperfmancecriteriawilltakeplaceoneachlevelofthetree.Theprocessendswhennofurtherimprovementispossiblefromonetree4CriticalfactsThefollowingsectionoutlinessomeproblemsassociatedwithdatamining.Inouropinionthesecriticalfacts

18、fsuccesswillfmthefoundationffutureresearchdevelopment.4.1EfficiencyofalgithmsRegardingtheefficiencyofdataminingalgithmsweshouldconsiderthefollowingaspects.Calculationtimesareakeyfact.Ifthecalculationtimesofalgithmsgrowfa

19、sterthanthelineardependencyofthesquarednumberofdatarecdstobesearchedwecouldassumethattheywouldnotbesuitableflargerapplications.Wecanimprovecalculationtimesbylimitingthesearchareathroughuserinputreducingthesearcheddatavol

20、umethroughtargeted(e.g.userbased)ioncompression.Recentdevelopmentsshowthatthecalculationtimeofalgithmswillbecomelessrelevantduetotechnicaldevelopments(e.g.fasterprocesssparallelcomputers).Thealgithmsmustberobustenoughtod

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論