版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、外文文獻(xiàn)原文:Artificial Neural Networks in Short Term load ForecastingK.F. Reinschmidt, President B. LingStone h Webster Advanced Systems Development Services, Inc.245 Summer Street Boston, U 0221 0Phone: 617-589-1 84 1Abstrac
2、t:We discuss the use of artificial neural networks to the short term forecasting of loads. In this system, there are two types of neural networks: non-linear and linear neural networks. The nonlinear neural network is us
3、ed to capture the highly non-linear relation between the load and various input parameters. A neural networkbased ARMA model is mainly used to capture the load variation over a very short time period. Our system can achi
4、eve a good accuracy in short term load forecasting.Key words: short-term load forecasting, artificial neural network1、IntroductionShort term (hourly) load forecasting is an essential hction in electric power operations.
5、Accurate shoirt term load forecasts are essential for efficient generation dispatch, unit commitment, demand side management, short term maintenance scheduling and other purposes. Improvements in the accuracy of short te
6、rm load forecasts can result in significant financial savings for utilities and cogenerators.Various teclmiques for power system load forecasting have been reported in literature. Those include: multiple linear regressio
7、n, time series, general exponential smoothing, Kalman filtering, expert system, and artificial neural networks. Due to the highly nonlinear relations between power load and various parameters (whether 2、Variables Afferti
8、ng Short-Term LoadSome of the variables affecting short-term electxical load are:TemperatureHumidityWind speedCloud coverLength of daylightGeographical regionHolidaysEconomic factorsClearly, the impacts of these variable
9、s depend on the type of load: variations in temperature, for example, have a larger effect on residential and commercial loads than on industrial load. Regions with relatively high residential loads will have higher vari
10、ations in short-term load due to weather conditions than regions with relatively high industrial loads. Industrial regions, however, will have a greater variation due to economic factors, such as holidays.As an example,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用(英文)
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.doc
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.doc
- 人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.pdf
- 人工魚群神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用研究.pdf
- 人工神經(jīng)網(wǎng)絡(luò)在短期電力負(fù)荷預(yù)測(cè)中的應(yīng)用研究.pdf
- 模糊神經(jīng)網(wǎng)絡(luò)及其在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 免疫人工魚群的RBF神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.pdf
- 模糊神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.pdf
- 模糊神經(jīng)網(wǎng)絡(luò)及其在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.pdf
- 基于人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè).pdf
- 基于改進(jìn)人工神經(jīng)網(wǎng)絡(luò)法的短期負(fù)荷預(yù)測(cè).pdf
- 外文翻譯-伊朗國(guó)家電網(wǎng)利用人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)
- 遺傳禁忌神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)研究
- 基于人工神經(jīng)網(wǎng)絡(luò)的燃?xì)舛唐谪?fù)荷預(yù)測(cè)研究.pdf
- 基于人工神經(jīng)網(wǎng)絡(luò)的短期電力負(fù)荷在線預(yù)測(cè)研究.pdf
- 基于WNN神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè).pdf
評(píng)論
0/150
提交評(píng)論