版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、In cases where the model of plants is complex or varying in time, certain parameters need to be experimentally determined; doing these experiments we have a valuable tool for understanding the behavior of the plant.The b
2、ehavior of a dynamic system can be understood throw the utilization of techniques as analytical model (from the basis principles of physics), with direct measure of many parameters of the plant with an identification of
3、models from inputs and outputs.A procedure of modeling needs many interactions.Additional, acceptable control project needs the validation of the model.Examples of complex plants are iron ovens and helicopter rotors.Exam
4、ple of variant time plants is satellites that change their temperature when they are in orbit.A pendulum is an example of plant that can be modeling for basic principles.The most popular method is identifying of model pl
5、ant using the experimental data, and then designing the control process.An engineer usually realizes certain numbers of experiments and uses them with many optimization techniques to build a model plant.The plant model i
6、s then used for designing model-based controllers.The methods that use experimental data can be divided on four categories: Indirect Control Project, Direct Control Project, Indirect Adaptive, and Direct Adaptive.The tec
7、hniques are differentiated by operating offiine and online and if the plant model is used directly or indirectly in the control of the project.When the project based on the plant model is used online is usually referred
8、to as indirect adaptive control.The technique typically begins by assuming a nominal model for the plant.When new data are collected, the output is compared with the planned output for the plant model producing a nominal
9、 error.The gradient of the error with respect to the parameters of the plant is used to modify the parameters of the plant to improve the plant model.Periodically the control law is updated using the latest model obtaine
10、d.One characteristic of the model-free techniques has a simple and integrated control law derivable directly from experimental data and performance specifications.However,the main attraction of model-free technique it is
11、 its implementation online, in these cases, we can divide the model-free technique in two parts: tuning model-free and model-free control.Techniques for tuning model-free are characterized by directly determining the par
12、ameters of controlling data input and output through performance criteria desired for the closed loop system.These techniques can be explorer on determining parameters of the following controllers: PID (Proportional + De
13、rivative +Integral), GMV (Generalized Minimum Variance).The techniques of model-flee control are characterized by the fact of using only the input and output data of the plant to be adapted.The control laws are derivable
14、,generally, without the use of the traditional models (CAR (Controlled Auto Regressive)),CARMA (Controlled Auto Regressive Moving Average)).However, in some cases, it is common to obtain the control laws from simplified
15、representations for the plant (PG (Pseudo-Gradient), PPD (Partial-Pseudo-Derivative)).The mechanism of adaptation uses identification techniques based on the LMS algorithm (Least Mean Squares) or techniques of computatio
16、nal intelligence such as neural networks, fuzzy systems.The close links between identification and control design may lead to an increase in project automation controllers.However, this conjecture can only be confirmed t
17、hrow the experience of control engineers who are enabled for testing in both field based-control models as the model-free technique.Following the idea introduced above, the model-flee controllers can be extended to other
18、 forms according to different dynamic linearization models.This thesis will present two types of model-free controllers with different control updating laws.A class of SISO discrete-time nonlinear systems can be transfor
19、med into a Partial Form Dynamic Linearization (PFDL) of a data model to build the PFDL based model-flee control scheme, integrating control algorithm and PG estimation algorithm.This class of SISO discrete-time nonlinear
20、 systems can also be transformed into Full Form Dynamic Linearization (FFDL) data model.We evaluate the applicability of the controllers to tracking reference and disturbance rejection (regulation).To evaluate the charac
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無模型自適應(yīng)控制方法及其應(yīng)用研究.pdf
- 模型算法控制的應(yīng)用研究
- 算法交易、違約模型及其應(yīng)用研究.pdf
- 無模型控制方法及其在能源系統(tǒng)中的應(yīng)用研究.pdf
- 訪問控制模型及其應(yīng)用研究.pdf
- 無模型控制的理論與應(yīng)用研究.pdf
- 圖像修補(bǔ)模型、算法及其應(yīng)用研究.pdf
- 預(yù)測控制算法及其應(yīng)用研究.pdf
- 無模型控制方法的改進(jìn)與應(yīng)用研究.pdf
- 無模型自適應(yīng)控制方法及應(yīng)用研究.pdf
- 迭代預(yù)測控制算法及其應(yīng)用研究.pdf
- 混合加網(wǎng)算法模型及其應(yīng)用研究.pdf
- 數(shù)字圖像修補(bǔ)模型、算法及其應(yīng)用研究.pdf
- 優(yōu)化迭代學(xué)習(xí)控制算法及其應(yīng)用研究.pdf
- 智能預(yù)測控制算法及其應(yīng)用研究.pdf
- 模型驅(qū)動PID控制策略及其應(yīng)用研究.pdf
- 大規(guī)模木馬控制模型及其應(yīng)用研究.pdf
- 風(fēng)電場無功控制模型及其應(yīng)用研究.pdf
- 基于組合模型的非線性預(yù)測控制算法及其應(yīng)用研究.pdf
- 無模型控制方法的功能分析與應(yīng)用研究.pdf
評論
0/150
提交評論