

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、隨著知識經(jīng)濟(jì)的快速發(fā)展,企業(yè)對知識的需求越來越強(qiáng)烈,很多企業(yè)通過引入知識管理系統(tǒng)來管理企業(yè)內(nèi)部的知識資源。然而,系統(tǒng)中知識資源的急劇增長導(dǎo)致用戶很難找到真正需要的知識,從而陷入知識迷航的困境。個性化推薦技術(shù)是目前解決信息過載問題最有效的方法之一,利用推薦技術(shù)可以將用戶從海量的知識資源中解脫出來,幫助用戶高效地獲取知識。本文將個性化知識推薦技術(shù)引入到鐵路貨車設(shè)計知識管理系統(tǒng)中,重點對用戶建模方法和個性化推薦算法進(jìn)行研究。論文的主要研究內(nèi)容
2、如下:
(1)給出了基于個性化知識推薦技術(shù)的設(shè)計知識管理系統(tǒng)框架,該框架由知識資源層、知識處理層、業(yè)務(wù)邏輯層和用戶接口層組成。其中,業(yè)務(wù)邏輯層是系統(tǒng)的核心層,主要負(fù)責(zé)用戶建模和個性化知識推薦的業(yè)務(wù)處理。
(2)提出了一種基于本體的細(xì)粒度用戶建模方法。在基于本體的用戶建模方法基礎(chǔ)上,定義了用戶模型的細(xì)粒度描述;給出了基于瀏覽行為的用戶興趣度量方法,并結(jié)合領(lǐng)域本體實現(xiàn)用戶模型的推理學(xué)習(xí),同時給出了基于用戶興趣衰減機(jī)制的用
3、戶模型動態(tài)更新方法。
?。?)提出了一種基于本體的多層協(xié)同過濾推薦算法,給出了算法的總體思路及處理流程。算法在基于本體的細(xì)粒度用戶模型的基礎(chǔ)上,結(jié)合了多種用戶相似性度量方法,通過對用戶鄰居集合進(jìn)行多層過濾得到用戶最近鄰,然后根據(jù)最近鄰的群體興趣為用戶推薦知識,并通過實驗驗證了本文算法的有效性。
?。?)完成了基于個性化知識推薦技術(shù)的設(shè)計知識管理系統(tǒng)的設(shè)計與開發(fā)。通過分析項目背景給出了系統(tǒng)的主要功能結(jié)構(gòu),描述了系統(tǒng)的設(shè)計和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于本體的個性化推薦系統(tǒng)
- 基于本體的個性化搜索技術(shù)研究與應(yīng)用.pdf
- 基于本體的影視個性化推薦算法研究.pdf
- 基于本體的學(xué)習(xí)內(nèi)容個性化推薦.pdf
- 基于Tag技術(shù)的知識個性化推薦及系統(tǒng).pdf
- 基于LBSN的個性化推薦技術(shù)研究.pdf
- 基于本體的學(xué)習(xí)內(nèi)容個性化推薦研究.pdf
- 基于tag的個性化推薦技術(shù)研究.pdf
- 基于領(lǐng)域本體的個性化推薦系統(tǒng)研究與應(yīng)用.pdf
- 基于本體的個性化營養(yǎng)推薦系統(tǒng).pdf
- 基于用戶興趣的個性化推薦技術(shù)研究.pdf
- 基于圖模型的個性化推薦技術(shù)研究.pdf
- 基于WUM的個性化智能推薦技術(shù)研究.pdf
- 基于領(lǐng)域本體的語義檢索及個性化推薦算法研究.pdf
- 基于案例推理的個性化推薦技術(shù)研究.pdf
- 基于本體的個性化信息推薦系統(tǒng)研究.pdf
- 基于課程本體的學(xué)習(xí)內(nèi)容個性化推薦的研究與應(yīng)用.pdf
- 基于XML及關(guān)聯(lián)規(guī)則的個性化推薦技術(shù)研究.pdf
- 基于用戶體驗的個性化服裝推薦技術(shù)研究.pdf
- 基于圖模型的個性化標(biāo)簽推薦技術(shù)研究.pdf
評論
0/150
提交評論