基于Hadoop的分布加權(quán)FP-tree算法的研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩52頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、關(guān)聯(lián)規(guī)則挖掘(ARM)是數(shù)據(jù)庫(kù)知識(shí)發(fā)現(xiàn)中的一個(gè)重要課題。自ARM思想出現(xiàn)以來(lái),為了提高挖掘的性能,研究人員提出了很多ARM算法。但是,隨著當(dāng)今網(wǎng)絡(luò)的發(fā)展,用戶數(shù)據(jù)和知識(shí)指數(shù)級(jí)增長(zhǎng),同時(shí),這些數(shù)據(jù)的重要程度又存在很大差別,因此,如何在海量數(shù)據(jù)中挖掘出用戶真正需求的關(guān)聯(lián)規(guī)則,是關(guān)聯(lián)規(guī)則挖掘的一個(gè)新的難題。
  由于數(shù)據(jù)庫(kù)中數(shù)據(jù)重要程度不同時(shí),而傳統(tǒng)ARM算法沒(méi)有考慮數(shù)據(jù)的權(quán)重,因此傳統(tǒng)的ARM算法不再滿足實(shí)際需求。而且在處理大數(shù)據(jù)集時(shí)

2、,原有的串行ARM算法計(jì)算量大,I/O資源消耗嚴(yán)重,在內(nèi)存和計(jì)算消耗方面都會(huì)遇到瓶頸,無(wú)法在海量數(shù)據(jù)集中挖掘出關(guān)聯(lián)規(guī)則。
  本文在研究了多種串行ARM算法的基礎(chǔ)上,提出了一種基于Hadoop的分布加權(quán)關(guān)聯(lián)規(guī)則挖掘(HWARM: Weighted Association Rule Mining on Hadoop)算法。該算法滿足加權(quán)向下封閉性,解決了傳統(tǒng)ARM算法無(wú)法挖掘不同權(quán)重?cái)?shù)據(jù)的問(wèn)題,使用Hadoop這一分布式計(jì)算平臺(tái)并行

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論