可變光照下的人臉識(shí)別技術(shù)研究.pdf_第1頁(yè)
已閱讀1頁(yè),還剩61頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、人臉識(shí)別技術(shù)是模式識(shí)別和機(jī)器視覺(jué)領(lǐng)域最富挑戰(zhàn)性的研究課題之一,它在公共安全、信息安全、人機(jī)交互等領(lǐng)域中有著廣泛的應(yīng)用前景。經(jīng)過(guò)三十多年的研究,人臉識(shí)別技術(shù)在理想環(huán)境條件下已達(dá)到實(shí)用程度,但是在環(huán)境不可控的情況下,由于光照、姿態(tài)、表情、遮擋等變化的影響,已有的人臉識(shí)別算法性能大大下降,其應(yīng)用范圍也受到了較大的限制。因此,針對(duì)各種變化的魯棒的人臉識(shí)別技術(shù)是當(dāng)前的一個(gè)研究熱點(diǎn)。本文主要針對(duì)不同光照條件下的人臉識(shí)別技術(shù)進(jìn)行了研究。主要完成的工作

2、概括如下: 首先,在圖像預(yù)處理環(huán)節(jié),本文提出了一種人臉圖像光照補(bǔ)償?shù)男路椒?。通過(guò)構(gòu)造原人臉圖的二值圖,從而確定出原圖所屬的光源方向。然后,在除正面光源外的每個(gè)光源方向上構(gòu)造出通用的平均亮度差值來(lái)進(jìn)行光照補(bǔ)償。最后,結(jié)合去掉三個(gè)特征值最大的PCA特征向量的方法進(jìn)行識(shí)別。實(shí)驗(yàn)表明,這種方法能夠顯著提高光照變化條件下的人臉識(shí)別率。 其次,在特征提取環(huán)節(jié),分別介紹了PCA,2D-PCA,2D-LDA和PCA+LDA四種方法的基本

3、原理。其中,2D-PCA和2D-LDA都是基于2D人臉圖像矩陣而無(wú)須矢量化的方法,能夠有效地解決運(yùn)算量和矩陣奇異的問(wèn)題。而PCA+LDA算法則是先用PCA投影矩陣將原始向量空間降維,然后再用LDA進(jìn)一步降低維數(shù)并獲取精簡(jiǎn)的分類(lèi)特征,從而在能夠很好地表示圖像的結(jié)構(gòu)信息的同時(shí)減少了計(jì)算量,也避免了LDA的矩陣奇異問(wèn)題。 在分類(lèi)器設(shè)計(jì)環(huán)節(jié)上,介紹了4種經(jīng)典的分類(lèi)器:最近鄰分類(lèi)器,k-近鄰分類(lèi)器,SVM和貝葉斯分類(lèi)器,其中重點(diǎn)討論了貝葉

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論