版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 本科畢業(yè)設(shè)計</b></p><p><b> 外文文獻及譯文</b></p><p> 文獻、資料題目:The Role of Natural Gas in a Low-Carbon Energy Economy</p><p> 文獻、資料來源:World Institute<
2、/p><p> 文獻、資料發(fā)表(出版)日期:2010.4</p><p> 院 (部): 熱能工程學(xué)院</p><p> 專 業(yè): 建筑環(huán)境與設(shè)備工程</p><p> 班 級: 建環(huán)084</p><p> 姓 名: 楊丹</p><p> 學(xué) 號: 2008
3、031125</p><p><b> 指導(dǎo)教師: 陳彬劍</b></p><p> 翻譯日期: 2012.5.25</p><p><b> 外文文獻: </b></p><p> The Role of Natural Gas in a Low-Carbon Energy Economy
4、</p><p> Executive Summary</p><p> Growing estimates of natural gas resources, including a new category of “unconventional” gas, suggest that accessible supplies of this least carbon-intensive
5、 of the fossil fuels may be far more abundant than previously assumed. This unexpected development creates opportunities for deploying natural gas in a variety of sectors—including power generation, industry, and transpo
6、rtation—to help displace oil and coal, thereby reducing greenhouse gas emissions and improving air quality. Beyond providin</p><p> All of these gains are contingent on the development of sound public polic
7、y to incentivize and guide the transition. Critical policy decisions that are now pending include: electric power regulation at the local, state, and federal levels; effective federal and state oversight of the natural g
8、as exploration and extraction process; future Environmental Protection Agency (EPA) regulatory decisions under the U.S. Clean Air Act; and putting a price on greenhouse gas emissions.</p><p> I. The Renaiss
9、ance of Gas </p><p> Natural gas was first developed as a modern fuel, together with oil, in the late 19th century. Most of the early gas resources were co-located with oil, and this associated gas was extr
10、acted almost as an afterthought as the oil industry took off in the early 20th century. Like oil, natural gas began to be used to a limited extent in the industrial, residential, and commercial sectors as a feedstock and
11、 to heat buildings prior to World War II. Following the war, the United States and a few other </p><p> The 1990s were marked by relatively low and stable gas prices as U.S. and Canadian suppliers easily ke
12、pt up with demand growth. But soaring oil prices, together with falling reserves of conventional natural gas, drove gas prices from just over $2 per million BTU in 2002 to as high as $13 per million BTU in 2008, making m
13、any potential users reluctant to invest in the fuel.Since then, gas prices have moderated somewhat—ranging between $2.50 and $6 per million BTU in 2009 and 2010. Still, price vol</p><p> Tempering coal’s pr
14、ice advantage are the substantial environmental advantages of natural gas, which have gained economic significance as clean air standards have become progressively tighter in recent decades. Burning natural gas produces
15、virtually none of the sulfur, mercury, or particulates that are among the most health-threatening of pollutants that result from coal combustion. A National Research Council study published in 2009 estimated that the env
16、ironmental damages associated with electr</p><p> Transportation, the sector where oil is dominant, will likely be affected most by the widening price gap between oil and gas. Boosted by a new generation of
17、 compressed-gas fuel tanks, natural gas vehicles have already become popular in countries such as Italy and Pakistan, where they are seen as an economical way to reduce dependence on oil.</p><p> In the Uni
18、ted States, where gasoline prices have been relatively low by international standards, natural gas vehicles have never been as popular, but many local governments have turned to gas-powered buses to reduce fuel costs and
19、 the local air pollution from diesel buses. Texas businessman T. Boone Pickens has proposed a nationwide effort to convert heavy-duty trucks to run on natural gas, in part to minimize U.S. dependence on foreign oil. <
20、/p><p> Recent studies conclude that, beyond their ability to reduce local air pollution, natural gas vehicles also lower greenhouse gas emissions by roughly 25 percent compared with oil, far less than the red
21、uctions possible in power generation but significant nonetheless. The big question now facing energy planners is whether sufficient natural gas will be available at a competitive price to allow for significant displaceme
22、nt of oil in transportation and coal in power generation. The answer to that qu</p><p> II. The Unconventional Gas Revolution </p><p> A newfound abundance of natural gas promises to tip the f
23、ossil fuel balance further in its favor. Gas production in the United States peaked in the early 1970s, along with oil, but in recent years technology advances have dramatically reversed the decline. Advances in horizont
24、al drilling and hydraulic fracturing have unlocked gas resources in ―unconventional reservoirs, such as tight sands, coal bed methane, and shale rock rich in organic materials. As a result, resource estimates have increa
25、sed</p><p> While shale rock does not give up its methane easily, this is more than balanced by its abundance. The Potential Gas Committee, an independent authority on gas supplies based at the Colorado Sch
26、ool of Mines, estimated potential U.S. natural gas resources in 2008 to be 1,836 tcf, up 39 percent from 2006—with the difference due mainly to a steep increase in estimates of recoverable shale gas. Proven reserves have
27、 increased 13 percent to 238 tcf, bringing total gas resources to 2,074 tcf. Assessmen</p><p> Since 1990, unconventional gas production has already increased fourfold, with an even steeper rise in the past
28、 few years contributing to a sharp decline in gas prices and a collapse in the North American market for imported liquefied natural gas. Surprisingly, the boom has only slowed marginally in the face of a steep recession
29、and a sharp decline in the price of natural gas since 2008, suggesting that unconventional gas may be cheaper to produce than conventional gas. The breakeven price for s</p><p> The rise of gas stands in sh
30、arp contrast to the three-decade decline in U.S. oil production. Since 1990, total U.S. gas production has increased 20 percent while oil production fell 33 percent. Today, the United States produces more than twice as
31、much gas as it does oil, and that gap will almost certainly widen in the coming years. After decades of selling their domestic fields to independent producers, major oil companies such as ExxonMobil and BP have signaled
32、a significant shift in their thi</p><p> III. Generating Low-Carbon Electricity </p><p> The prospect of more abundant and economical gas supplies, together with the increasing urgency of the
33、climate problem, is drawing increased attention to the role that natural gas might play in the transition to a low-carbon power sector. In addition to the emissions reductions it offers over coal, natural gas is a more f
34、lexible fuel, with the ability to provide backup power on a range of scales to an electricity system that will include a rising share of variable wind and solar energy, combined</p><p> Although coal is the
35、 leading source of electricity in the United States, most of the new power plants added to the U.S. electricity grid since 1990 are powered by natural gas. This includes 201 gigawatts (GW) of highly efficient combined-cy
36、cle power plants and 107 GW of relatively inefficient gas-turbine peaking plants that are typically turned on only when needed during peak demand periods. Altogether, natural gas power plants now represent 31 percent of
37、U.S. generating capacity (excluding gas-</p><p> The carbon emissions of the U.S. power sector could be decreased significantly simply by running some of the existing plants more frequently and operating co
38、al plants less, which would have a significant impact on carbon emissions. In a 2010 study, the Congressional Research Service found that if existing combined-cycle plants could be operated at 85 percent of their capacit
39、y, gas could replace nearly one-third of coal generation and reduce power sector carbon dioxide emissions by 19 percent. Ta</p><p> The recent decline in gas prices has already led utilities to increase the
40、 utilization of their gas plants, raising the gas share of generation in 2009 to 23 percent, higher than at any time in the past three decades. The resulting drop in coal-fired power generation was responsible for almost
41、 half of the nearly 10-percent decline in U.S. carbon dioxide emissions from energy consumption between 2007 and 2009. And some utilities are deciding to make these changes permanent. Faced with the steep c</p>&l
42、t;p> In addition to the emissions savings they represent over coal plants, natural gas generators are better suited to play a complementary role in a generation mix that includes a growing amount of wind and solar po
43、wer. Unlike coal plants, gas plants can be more easily turned on and off, enabling utilities to use them to balance variable generation from renewable energy sources. For this reason, nine solar thermal power plants buil
44、t in California during the 1980s and early 1990s were designed as gas</p><p> A new generation of smaller, ―distributed gas-fired generators that harness waste heat for heating and cooling can provide bette
45、r environmental performance than even the most efficient central-station plants while adding an economical and flexible element to the power grid.</p><p> Technologies ranging from reciprocating engines (si
46、milar to those used in automobiles) to gas turbines and fuel cells can be added to factories, commercial buildings, and even family homes. Located within the local power distribution system, micro-power plants avoid the
47、need to add expensive and hard-to-site transmission lines and—unlike ―baseload coal and nuclear plants—can easily be turned on and off as needed to meet fluctuating power demand. Compared with electricity from a conventi
48、onal powe</p><p><b> 中文譯文:</b></p><p> 天然氣在低碳經(jīng)濟中的角色</p><p><b> 執(zhí)行概要</b></p><p> 日益增長的估計的天然氣資源,包括一個新的類別的“非常規(guī)”天然氣,表明供應(yīng)的訪問這個最低碳的化石燃料,可能遠(yuǎn)比此前以為的更
49、加豐富。這意想不到的發(fā)展創(chuàng)造了機會部署天然氣在各種各樣的行業(yè),發(fā)電、工業(yè)和運輸以協(xié)助取代石油和煤炭,從而減少溫室氣體的排放和改善空氣質(zhì)量。除了提供一個更清潔的環(huán)境,天然氣準(zhǔn)備替代煤炭,石油的市場,天然氣可以方便的系統(tǒng)性變化,這將鞏固發(fā)展一個更節(jié)能和可再生能源經(jīng)濟。例如,較小的、分布式發(fā)電機,許多生產(chǎn)可用熱量以及電力,就能產(chǎn)生經(jīng)濟,其低排放將代替一大群目前可操作常規(guī)發(fā)電廠,提供靈活的備份到變量輸出的太陽能和風(fēng)力發(fā)電機,這將在電力系統(tǒng)中包括
50、一個越來越大的份額。</p><p> 所有的這些收益是視發(fā)展健康的公共政策,激勵和引導(dǎo)過渡而定的。在美國《清潔空氣法》是至關(guān)重要的政策決策,它們目前正等待包括:電力監(jiān)管的地方、州和聯(lián)邦級別;有效的聯(lián)邦和州的監(jiān)督天然氣勘探和開采過程;未來的環(huán)境保護署(EPA)監(jiān)管部門的決定,并規(guī)定溫室氣體排放的價格。</p><p><b> ?、?、氣體的文藝復(fù)興</b></
51、p><p> 包括油在內(nèi),在19世紀(jì)晚期天然氣第一個被開發(fā)成一個現(xiàn)代的燃料。最早期的天然氣資源與油和煤進行合作,這種相關(guān)幾乎是開始于20世紀(jì)初的事后石油工業(yè)。像石油一樣,天然氣開始被用于一個有限的程度,二戰(zhàn)前在工業(yè)、居住和商業(yè)部門作為原料和供暖。戰(zhàn)爭之后,美國和其他一些國家開始建立廣泛的和昂貴的管道,使天然氣成為美國能源經(jīng)濟的中流砥柱,第一代的燃?xì)怆姀S建造。作為石油生產(chǎn)的副產(chǎn)品,天然氣是廉價的,到20世紀(jì)70年代初
52、期,提供美國30%的能源供應(yīng),而且大多數(shù)都是工業(yè)和建筑。但那是一個頂峰。由于受到政府的價格管制,美國石油供應(yīng)減少,因此美國鼓勵探索。到了20世紀(jì)70年代末期,大多數(shù)專家認(rèn)為,天然氣已經(jīng)進入了一個不可避免的下滑時期。政策制定者們很擔(dān)心,有一段時間,國會在美國非法建立天然氣發(fā)電廠以保持其主導(dǎo)地位;天然氣作為工業(yè)燃料和最經(jīng)濟的供暖方式,到了20世紀(jì)90年代, 美國的能源供應(yīng)它跌至不到24%,而且一直保持在這一水平附近將近15年。適度的需求增長
53、在20世紀(jì)90年代和21世紀(jì)早期,是由加拿大進口。</p><p> 20世紀(jì)90年代都是相對較低且穩(wěn)定的油價,使美國和加拿大的供應(yīng)商能輕松跟上增長的需求。但不斷飆升的油價,加上傳統(tǒng)的天然氣儲備的下降,汽油價格從2002年的2美元/mBTU到2008年高達13美元/ mBTU,使許多潛在用戶不愿投資于燃料。自那時以來,天然氣價格已經(jīng)回落到2.50美元到6美元/ mbtu在2009年和2010年。不過,價格波動仍
54、然是天然氣的致命弱點,特別是當(dāng)與煤炭相比的時候。</p><p> 回火煤的價格優(yōu)勢是大量天然氣的優(yōu)勢,獲得經(jīng)濟意義的清潔空氣標(biāo)準(zhǔn)在最近幾十年已經(jīng)逐漸收緊。燃燒天然氣不會產(chǎn)生硫、汞、或當(dāng)眾最威脅健康的從煤燃燒產(chǎn)生的污染物粒子。發(fā)表于2009年的國家研究理事會估計從天然氣電力與相關(guān)的環(huán)境損害賠償比煤低95%。盡管天然氣確實會產(chǎn)生氮氧化物、一氧化碳,是美國的一些地區(qū)臭氧污染的重要貢獻者,但是這些可以大幅度減少排放的
55、控制與廣泛使用。越來越多的管住氣候變化,今年來曾對天然氣有利。氣煤作為包含了一半多的碳元素和碳比油少了25%。計劃和建議聯(lián)邦個州的行動,遏止溫室氣體排放量——從可再生或清潔能源投資組合標(biāo)準(zhǔn)為上限對碳排放控制技術(shù)更嚴(yán)格的要求——公開所有石油和煤炭的投資。比天然氣有更大的風(fēng)險。環(huán)境考慮了近年來重振的電力,以天然氣作為來源的興趣。自上世紀(jì)90年代,一代新的高效的燃?xì)怆姀S,與煤的2%相比,已經(jīng)添加到美國電網(wǎng)的新容量的65%。而許多這樣的產(chǎn)能仍未
56、充分利用的部分原因是相對較高的天然氣價格,價格下降在2009年提高到23%的美國天然氣發(fā)電,高于2007年的20%,只是最近1990年的12%。在同一時期,煤從52%的美國電力下降到45%。電力行業(yè)以外的其他應(yīng)用程</p><p> 運輸,油在哪里主導(dǎo)地位,該部門將有可能受石油和天然氣價格貧富差距。得益于新一代的燃料槽,天然氣汽車在意大利,巴基斯坦這樣的國家非常受歡迎,在那里,它們被視為一種十分經(jīng)濟的方法來降低
57、對石油的依賴。在美國,汽油價格一直相對低于國際標(biāo)準(zhǔn),天然氣汽車還從未如此受歡迎,但許多地方政府都轉(zhuǎn)向天然氣公交車降低燃料成本和當(dāng)?shù)氐目諝馕廴?。德克薩斯商人布恩·皮肯斯提出了一個全國性行動:將重型卡車使用天然氣,部分是為了減少美國對外國石油的依賴。最近的研究認(rèn)為,減少當(dāng)?shù)氐目諝馕廴境鏊麄兂惺苣芰?天然氣汽車和油相比,也降低溫室氣體排放量約25%,遠(yuǎn)低于發(fā)電的減少,但無疑意義重大。現(xiàn)在能源規(guī)劃者面臨的最大問題是是否有充足的天然氣
58、將可用以有競爭力的價格以代替石油在運輸上以及煤炭在發(fā)電上的位置。這個問題的答案很大程度上就在決定開發(fā)新的天然氣,其已經(jīng)深刻的影響近年來美國能源產(chǎn)業(yè)。</p><p> Ⅱ、非常規(guī)天然氣革命</p><p> 一個新發(fā)現(xiàn)的豐富的天然氣承諾以使化石燃料平衡。在 70 年代初,隨著石油、 天然氣生產(chǎn)在美國達到頂峰,但近年來的技術(shù)進步極大地扭轉(zhuǎn)了衰退。水平井鉆井的發(fā)展、水力壓裂開啟了天然氣資源
59、―等非常規(guī)油氣儲藏,比如致密砂巖,煤層甲烷,巖和頁巖富含有機材料。因此,資源估計數(shù)大幅增加和天然氣勘探,生產(chǎn)的非常規(guī)資源國際上應(yīng)用時借鑒美國的經(jīng)驗教訓(xùn),如有可能受供應(yīng)、價格波動的影響和包圍了過去幾十年過程中的能源安全問題。非常規(guī)天然氣是充當(dāng)源和儲層的烴類載體的低孔沉積巖地層中發(fā)現(xiàn)的。因為自身的低孔隙度、天然氣比常規(guī)氣更難以從非傳統(tǒng)地層中提取, 通常包含起源于其它單位的碳?xì)浠衔锏拇鎯χ刑崛〉?。但隨著傳統(tǒng)資源枯竭,該行業(yè)已經(jīng)將注意力轉(zhuǎn)到以
60、前被視為太困難和昂貴的而難以提取的新的天然氣資源。上世紀(jì) 70 年代,天然氣生產(chǎn)商在發(fā)展常規(guī)天然氣勘探的過程中發(fā)現(xiàn)了致密砂巖。使用水力壓裂技術(shù)和水平井鉆井,他們能夠很大程度的在經(jīng)濟上在落基山國家恢復(fù)從這些資源中生產(chǎn)氣體。自那時以來,致密砂巖生產(chǎn)的氣體已經(jīng)在美國的所有氣體生產(chǎn)的 30%以上。天然氣也在煤層發(fā)現(xiàn),它可能會導(dǎo)致煤礦工人嚴(yán)重的健康和安全風(fēng)險,如果泄漏到大氣中,還會導(dǎo)致氣</p><p> 頁巖不會輕易放
61、棄其甲烷,而這是超過其豐度的平衡。潛在的氣體委員會,設(shè)在科羅拉多礦業(yè)學(xué)院的天然氣供應(yīng)的獨立權(quán)威估計,美國潛在的天然氣資源2008是1836 tcf,較2006年增長39%,主要是因為不同的對急劇增加可開采頁巖氣儲量的估計。由國際ICF評估,美國能源信息管理局(EIA)和Navigant Consulting公司確認(rèn)的資源強度,探明儲量增加了13%,達到238 tcf,使總天然氣資源達到2074 tcf。這些數(shù)據(jù)表明美國供應(yīng)的天然氣可能將
62、在90年按照目前的速度消費。因勘探收益和萃取技術(shù)的進一步發(fā)展,一些專家預(yù)計資源繼續(xù)增長。1990 年以來,非常規(guī)天然氣生產(chǎn)已經(jīng)增加了四倍,甚至更為急劇上升,在過去的幾年中天然氣價格急劇下降,北美進口液化天然氣的市場崩潰。出人意料的是,自2008年以來,在面對急劇衰退的經(jīng)濟和急劇下降的天然氣的價格, 經(jīng)濟繁榮時期只能小幅放緩。這表明非常規(guī)天然氣的生產(chǎn)成本可能比常規(guī)天然氣低。盈虧平衡價在不同的美國頁巖氣盆地報道的范圍從低于3美元到4.50美
63、元/百萬英熱單位。值得注意的是,最近一些盆地被開發(fā),包括其中最便宜的馬塞勒斯。此外,因為技術(shù)仍舊相對不成熟</p><p><b> ?、蟆⒌吞及l(fā)電</b></p><p> 希望有更豐富的和經(jīng)濟的天然氣供應(yīng),連同越來越急切的氣候問題,吸引更加關(guān)注天然氣在過度到低碳發(fā)點行業(yè)中可能扮演的角色。除了排放量削減,它提供了比煤和天然氣更靈活的燃料,能夠提供備份電源范圍擴展到
64、電力系統(tǒng),其中將包括變量的份額上升的風(fēng)能和太陽能,聯(lián)合熱功率和分布式發(fā)電。用天然氣代替煤發(fā)電急劇減少了二氧化碳的排放量,天然氣只包含了每單位煤產(chǎn)生能量的一半,天然氣也有助于更有效的發(fā)電形式,這就是聯(lián)合循環(huán)技術(shù)。這包括一個或多個燃燒渦輪機 (類似于噴氣發(fā)動機) 在捕獲熱量的燃燒渦輪排氣配備熱回收蒸汽發(fā)生器。熱回收蒸汽發(fā)生器驅(qū)動汽輪機發(fā)電機生成額外的電力。使用浪費在渦輪排氣的熱效率相比其它燃燒技術(shù)高45%(相比的大多數(shù)燃煤電廠的30–35%
65、)以上的效率。新的聯(lián)合循環(huán)燃?xì)獍l(fā)電廠產(chǎn)生的二氧化碳比新煤電廠少55%和,比美國煤電廠平均少62%。</p><p> 盡管煤炭是美國最主要的電力來源,但是自1990年來大部分天然氣供能的新電廠添加到美國電網(wǎng)中。這其中包括了只在高峰時期需要時打開的201兆瓦(GW)的高效的聯(lián)合循環(huán)電廠和107兆瓦的相對低效的渦輪調(diào)峰發(fā)電廠??偠灾c煤發(fā)電的33%相比,天然氣發(fā)電廠目前占美國發(fā)電能力的31%(不包括燃?xì)庹{(diào)峰發(fā)電
66、廠,它貢獻一個13%)。即使調(diào)峰發(fā)電廠排除在外,燃?xì)怆娏Πl(fā)電機獲益,操作的平均只有42%的產(chǎn)能。</p><p> 美國電力行業(yè)的碳排放可能只是由一些現(xiàn)有的電廠更頻繁地運行和運行的燃煤電廠較少,對碳排放的顯著下降將有重大影響。在2010年的美國國會的一項研究發(fā)現(xiàn),如果現(xiàn)有的聯(lián)合循環(huán)電廠可以達到操作容量的85%,天然氣可以取代近三分之一的煤發(fā)電和電力部門二氧化碳排放量減少 19%??紤]到選址的傳輸和約束,作者估計
67、當(dāng)前煤炭發(fā)電的量,可以導(dǎo)致天然氣流失將近9%。這些數(shù)字的差距表示,改革發(fā)電必須要求整個電力部門有一個系統(tǒng)性的方法。與煤炭相比,循環(huán)連環(huán)電廠除了更有效率和更清潔外,也更便宜且更快速地構(gòu)建。2008年對化石燃料、核能和可再生資源的調(diào)查顯示,天然氣聯(lián)合循環(huán)電廠的技術(shù)成本在任何生產(chǎn)成本中是最低的,只是新的煤粉廠的成本的一半,是核電站成本的五分之一。根據(jù)施工成本、 政府的鼓勵和碳控件的大多數(shù)假設(shè),聯(lián)合循環(huán)電廠是電力的一個極具競爭力來源。然而,由于
68、最近幾年天然氣價格的高度動蕩,燃?xì)怆娏Φ某杀臼欠浅C舾械摹?009年天然氣的平均價格是每千瓦時5.5美分,相對于2008年8.6美分每千瓦時有所下降。天然氣價格近期下降將他們氣體工廠天然氣的利用率在2009年提高到23%,高于過去三十年中的任何時候。由此產(chǎn)生的燃</p><p> 新一代的更小的,分布式天然氣發(fā)電機,利用余熱加熱和冷卻可以提供更好的環(huán)境,表現(xiàn)甚至比添加一個經(jīng)濟又靈活的元素的中央電網(wǎng)更有效。從往復(fù)
69、式發(fā)動機 (類似于那些用于汽車的) 到燃?xì)鉁u輪機和燃料電池的技術(shù)可以添加到工廠、 商業(yè)樓宇甚至家庭住宅。位于本地配電系統(tǒng)內(nèi)的微電廠,避免需要添加昂貴的到站點的輸電線路——不同于 煤炭和核工廠——它可以輕松地打開和關(guān)閉來滿足電力的波動需求。與傳統(tǒng)發(fā)電廠熱量從一個單獨的燃?xì)饧訜釥t相比,熱電聯(lián)產(chǎn)系統(tǒng)通常的效率在65%至80%之間,并將比聯(lián)合循環(huán)電廠允許更大的減排。這些單位設(shè)計用于在個別的住所,將以高達 94%的效率提供熱、 熱水、 和電力。被
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低碳經(jīng)濟外文翻譯
- 外文翻譯--低碳經(jīng)濟
- 低碳經(jīng)濟與深圳市天然氣利用
- 中國低碳經(jīng)濟的發(fā)展【外文翻譯】
- 天然氣管道泄漏與天然氣在大氣中擴散的模擬研究.pdf
- 外文翻譯---天然氣
- 天然氣在供暖應(yīng)用中關(guān)鍵問題的研究.pdf
- 低碳經(jīng)濟下我國天然氣產(chǎn)業(yè)發(fā)展戰(zhàn)略研究.pdf
- 低碳飲食【外文翻譯】
- 淺談天然氣在城市發(fā)展中的必要性
- 壓縮天然氣在城鎮(zhèn)燃?xì)夤?yīng)中的應(yīng)用研究.pdf
- 對低碳經(jīng)濟的經(jīng)濟學(xué)分析和工業(yè)低碳化策略【外文翻譯】
- 低碳經(jīng)濟下西部石油天然氣產(chǎn)業(yè)競爭力評價研究.pdf
- 埋地管道泄漏天然氣在土壤中的擴散規(guī)律研究.pdf
- 天然氣催化燃燒煙氣在干細(xì)胞培養(yǎng)中的應(yīng)用
- 歐洲能源政策和向低碳經(jīng)濟轉(zhuǎn)型【外文翻譯】
- 邁向低碳經(jīng)濟---市政融資和能源效率【外文翻譯】
- 低碳能源與低碳經(jīng)濟-低碳經(jīng)濟詳解
- 天然氣在車用燃料中的地位研究.pdf
- 天然氣在石墨烯上的吸附平衡.pdf
評論
0/150
提交評論