2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  WIRELESS NETWORK FOR IRRIGATION</p><p>  CONTROL AND SENSING</p><p>  Variations in plant water and nutrient demand and environmental regulations to protect water quality provide sign

2、ificant justification for site‐specific irrigation and fertigation systems. We have developed wireless valve controllers that self‐assemble into a mesh network. Mesh networking means that controllers pass messages to ext

3、end the effective communication range without using high‐power radios. Solar energy is collected with a 200mW panel to operate each controller node without yearly batt</p><p>  Conventional irrigation manage

4、ment provides water and nutrients uniformly across an entire field and ignores the reality that demand varies due to differences in soil, topology, and plant water and nutrient status. For site‐specific management, large

5、 plots are divided into several smaller management units based on variable site characteristics and each is provided individualized water and nutrient input to maximize profits, crop yield, and water‐use efficiency, and

6、lessen environmental impacts. </p><p>  Site‐specific irrigation has been most thoroughly tested in center pivot and linear move systems for field crops . Much less development has occurred for fixed irrigat

7、ion systems, which are used in high‐value permanent crops and commercial horticulture. Site‐specific technology for fixed irrigation would be applicable in orchards, vineyards, landscapes, nurseries, and greenhouses, eac

8、h of which has unique management challenges. The water and nutrient demand of trees, plants, and vines are impact</p><p>  Converting conventional fixed irrigation systems to allow site‐specific delivery of

9、water and nutrients would create many small management units, each with a valve that must be independently controlled. Additionally, each should have the capability to read in‐field sensors such as temperature and soil m

10、oisture, which are commonly used for closed‐loop irrigation control. Site‐specific control for fixed irrigation systems has been limited. Torre‐Neto et al. used latching solenoid valves to control</p><p>  R

11、ecent low‐cost, low‐power wireless networking technology is well suited to replace wires as the communication medium in many agricultural applications . In this article, we describe the development of a solar‐powered, wi

12、reless network for site‐specific application of water, fertilizer, and agricultural chemicals using completely autonomous units with mesh networking capability for both sensing and valve control. Large or small valves ca

13、n be used to allow management of multiple sprinklers or dri</p><p>  The objectives of this research were to: (1) design an intelligent valve controller with low‐power, wireless communication, (2) design an

14、energy management system to allow stand‐alone operation of each valve controller, and (3) develop a communication protocol to link the valve controllers with a central field controller.</p><p>  System desig

15、n</p><p>  Since this system was intended for application in orchards, greenhouses, landscapes, and nurseries, the wireless network had to be versatile enough to operate in many environments. Mesh networking

16、 allows messages to pass from one node to any other node in the network by routing them through intermediate nodes . One advantage of this system is increased network range without using high‐power radios. This allows gr

17、eater flexibility in node placement since interference or poor range between two nod</p><p><b>  Hardware</b></p><p>  Blue tooth and ZigBee‐based technologies were considered since

18、they have been tested in agricultural environments . Bluetooth was deemed not suitable for this development due to its higher energy consumption, shorter range, and lack of support for mesh network routing . A custom‐bui

19、lt system that would require only a microcontroller and radio transceiver was not selected due to the complexity of implementing robust mesh networking software. Instead, commercially available lowpower, mesh networki<

20、;/p><p>  Our first‐generation prototype for a wireless microsprinkler was designed using ZigBee demonstration boards . The mesh network communication protocol was handled by the company's implementation of

21、 the ZigBee wireless networking standard . At that time, we found that the ZigBee implementation did not support battery‐powered routers that can sleep between radio communications. While mesh networking is a key feature

22、 in ZigBee, routers are generally required to have main‐line power. There is a provi</p><p>  Our second‐generation prototype used low‐power wireless modules designed specifically for battery‐powered mesh n

23、etworking.A low‐power wireless module like this is commonly called a “mote,” which is defined as a small particle or speck, because it is the result of research aimed at sensors only a cubic millimeter in size. The modul

24、es were programmed with TinyOS , an open source operating system written for wireless sensors. Tiny OS includes its own communication protocol, but ZigBee compliant mo</p><p>  Figure1 Layout of mesh networ

25、k for wireless valve control.</p><p>  Another TinyOS‐based wireless module, the MICA2, was adopted for our third‐generation valve controller design, to be discussed here . The reasons for moving to these mo

26、dules were that the mesh networking software, XMesh, still used TinyOS but included improved downstream messaging, and the company was interested in developing products for agricultural monitoring and control, thus provi

27、ding a good opportunity for collaboration and increased likelihood of future commercialization. The wireless mod</p><p>  A prototype circuit board was provided by Crossbow Technology for development of the

28、valve controller . It included a 51‐pin connector to interface with the wireless module, a 3.0 V voltage regulator, thermistor, signal multiplexer, and input/output screw terminals. Figure3 shows a simplified block diag

29、ram of the circuit components and connection to valve and sensors. Valve actuation and sensor excitation were controlled by microcontroller outputs on the wireless module. The input channel multi</p><p>  A

30、7.2 V, 170 mA·h nickel cadmium battery constructed from two 3.6 V batteries in series and a 200 mW solar panel constructed from two 6.7 V panels in series were selected to provide continuous node operation withou

31、t yearly battery replacement. The solar panel was selected to provide a higher peak voltage than the expected 9 V maximum battery voltage during charging, and current that would supply enough charge to replenish all ener

32、gy used by the node. A nickel cadmium battery was chosen becau</p><p>  Many wireless sensors are designed to operate on only 3V, but a higher level was used here in order to provide adequate voltage for op

33、erating a 1‐inch or 1/8‐inch latching solenoid valve . The valves were rated for 12 VDC or more, but operated effectively at 7.2 V. Valve control voltage could easily be boosted by using a slightlylarger battery or charg

34、e pump with storage capacitors. Bidirectional current to the valves was controlled using an H‐bridge switching circuit composed of two N‐channel m</p><p>  Figure2 Block diagram of valve controller primary

35、components</p><p>  The wireless modules had an MMCX jack used with a 1/4‐wave whip or 1/2‐wave dipole antenna . The circuit components were housed in a clamshell‐style polycarbonate enclosure to provide dir

36、t and moisture protection during outdoor testing . Holes were drilled in the box for the antenna, valve, and sensor wires. The antenna was mounted directly to the box, and cable ports were used to provide a seal for valv

37、e and sensor wires. A base node consisting of a wireless module and RS‐232 gateway was connec</p><p><b>  Software</b></p><p>  The mesh networking protocol was handled by software i

38、ncluded with the wireless modules. Formation and operation of a mesh network was as follows. When powered, the nodes automatically began forming a network by transmitting “route update” messages. Route update messages we

39、re broadcast by each node so that neighboring nodes could determine the “cost” of routing messages between each other . This information was used to determine the best path for message routing from a remote node to the b

40、ase no</p><p>  The remote nodes were programmed with code written in nesC, an extension of the C language used for programming with TinyOS. The primary features used for irrigation control and sensing were

41、valve actuation routines, a software realtime clock, schedule storage and execution, and individual sensor measurement routines . One‐time valve commands were sent using the XCommand messaging component provided by the

42、manufacturer. A CustomCommand message type was created for commands requiring additional </p><p>  CloseValve simply actuated the valve accordingly. IrrigationCycleTime opened the valve, waited for the speci

43、fied duration to elapse, and then closed the valve. The SetClock command was used to send time stamps to synchronize the remote node clock with the field controller . Time stamps were automatically transmitted to nodes w

44、hen joining the mesh network and once each day. GetClock caused the remote node to send the current time of its software clock. ReadSoilMoisture, ReadPressure, ReadOnboard,</p><p>  Stress above one or more

45、of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the specifications are not implied. Expo

46、sure to limiting values for extended periods may affect device reliability.Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the devi

47、ce at these or at any other conditi</p><p>  無線網(wǎng)絡(luò)的灌溉控制和傳感</p><p>  在作物水分和養(yǎng)分的需求和環(huán)境法規(guī)的變化過程中,保護水質(zhì)是特定地點的灌溉和施肥系統(tǒng)的重要目的。我們開發(fā)的無線閥門控制器,自我組裝成一個網(wǎng)狀網(wǎng)絡(luò)。網(wǎng)狀網(wǎng)絡(luò)是指通過信息來擴展控制器使之在有效范圍內(nèi)無需使用高功率無線電通信。太陽能是收集了200毫瓦的面板操作,無

48、需更換電池。在一個網(wǎng)狀網(wǎng)絡(luò)九節(jié)點進行了測試,每個正確回答了命令。電池電壓,太陽能電池板電壓,機箱溫度和外部傳感器測量每10分鐘發(fā)送。灌溉工作制度分別儲存在每一個節(jié)點進行自動執(zhí)行。每個節(jié)點的時間表是獨一無二的,基于對特定地區(qū)的需要而進行灌溉。平均每6.3天發(fā)生一次內(nèi)部時鐘漂移。單跳傳輸距離916兆赫無線電使用從20.9變化與地面鞭天線米,偶極天線二百四十一點一米在3米節(jié)點命令被確認后,每跳2.7的平均水平。負責消費量約七點零三毫安為每日節(jié)

49、點電路和1 mA每一天電池自放電時間。太陽能電池板每小時生產(chǎn)26.081.3毫安在陽光直射和6.5至13.7兆的陰影。節(jié)點操作預(yù)計將持續(xù),偶爾的陽光照射。土壤濕度、壓力、溫度和其他環(huán)境傳感器將被用于反饋控制并發(fā)現(xiàn)問題。這樣的智能閥門控制器網(wǎng)絡(luò)將使,果園、葡萄園、苗圃、溫室和景觀種植者增加水和肥料利用效率。</p><p>  常規(guī)灌溉管理提供統(tǒng)一在整個領(lǐng)域水分和養(yǎng)分,而忽略現(xiàn)實由于土壤中,拓撲和植物水分和養(yǎng)分狀況

50、的差異而造成的需求變化。對于站點的具體管理,大地塊分為幾個較小的現(xiàn)場管理特點的基礎(chǔ)上,對變量的單位,每一方都提供了個性化的水分和養(yǎng)分的投入獲取最大利潤,作物產(chǎn)量和水分利用效率,并減少對環(huán)境的影響。網(wǎng)站的具體管理的好處已經(jīng)被報道了很多年。植物需要氮匹配交貨增加化肥使用效率,在一些大田作物的凈回報率,并減少了馬鈴薯作物模擬硝態(tài)氮淋失。個別基于樹的大小的應(yīng)用比傳統(tǒng)治療整體施氮柑橘顆粒肥料減少了38%至40%的氮使用量。邏輯上似乎變率顆粒施肥的

51、好處將是浮息施肥視為良好。空間變化的管理也被證明能增加玉米的利潤和提高糧食產(chǎn)量的土豆和高粱。</p><p>  現(xiàn)場的具體灌溉在中心樞紐和大田作物線性移動系統(tǒng)得到了最徹底的測試。更不用說發(fā)展已發(fā)生的固定灌溉系統(tǒng),這是在高價值作物和商業(yè)園藝永久使用?,F(xiàn)場的具體固定灌溉技術(shù)將適用于果園,葡萄園、風景、苗圃和溫室,每個都有獨特的管理挑戰(zhàn)。水和樹木,植物和藤本植物營養(yǎng)素的需求都隨著土壤條件,海拔,氣候變化而變化。種植在

52、陡峭的山坡上的葡萄園和果園,由于壓力變化使得創(chuàng)建和維護,防止徑流灌溉更加困難,。商業(yè)苗圃和溫室包含接近許多不同的觀賞植物品種彼此必須處理不斷變化的庫存和嚴格的環(huán)境法規(guī)。一個典型的單閥發(fā)射器控制不同的水流量,如果有不同大小或水的要求不同的植物存在,有些會吸收過多的水,而其他人將得到水太少。控制美國干旱地區(qū)景觀灌溉也是很重要的,因為大量的水使用于公共草坪草和觀賞植物。</p><p>  轉(zhuǎn)換傳統(tǒng)的固定灌溉系統(tǒng),以允

53、許特定水分和養(yǎng)分得傳輸會造成許多小的管理單位,每個管理單位必須具有獨立控制閥門。此外,每個都應(yīng)該有感應(yīng)傳感器,如溫度和土壤濕度傳感器,這是常用的閉環(huán)控制灌溉使用。現(xiàn)場的具體固定灌溉系統(tǒng)的控制是有限的。用于閉鎖電磁閥控制在每行兩個柑桔果園邊音。每個橫向均勻灌溉行中,這是分組的大小的一半的樹木。為控制水流量對土壤水分的反饋的基礎(chǔ)上盆栽。 設(shè)計系統(tǒng),以控制閉鎖閥和閱讀灌溉控制傳感器。在上述每個系統(tǒng)之間的閥門,傳感器和控制器是昂貴的布線,安裝,

54、并需經(jīng)動物和機器損壞。認識到發(fā)展太陽能供電,具有獨立的灌溉土壤水分傳感器控制器這一點。但是,系統(tǒng)并沒有包含任何通信手段的集中聚集的傳感器數(shù)據(jù)或遠程監(jiān)控和重新編程。無線通信已用于監(jiān)測場傳感器,雖然很多使用大型電池和太陽能電池板或仍需要灌溉控制連接閥門。</p><p>  最近的低成本,低功耗無線網(wǎng)絡(luò)技術(shù)非常適合取代在許多農(nóng)業(yè)中應(yīng)用的溝通媒介線。在這篇文章中,我們描述了一個太陽能供電,為特定地址提供水肥的無線網(wǎng)絡(luò)的

55、發(fā)展,農(nóng)業(yè)化學(xué)品的使用和閥門控制兩種傳感與網(wǎng)狀網(wǎng)絡(luò)功能完全自主的單位。大或小的閥門可用于允許多個噴頭或滴灌灌水器,或個別植物或樹木管理。每個閥門是一個獨特的可編程的時間表,以配合不同的水分和養(yǎng)分的要求,可改變,以適應(yīng)疾病,生長發(fā)育,或季節(jié)性的變化。由導(dǎo)電性,壓力,土壤水分,或流量傳感器數(shù)據(jù)可能允許閉環(huán)控制灌溉和施肥。在以往的工作,壓力傳感器被用來改進水的應(yīng)用精度相比灌溉和提供的換行和發(fā)射器堵塞自動檢測。 </p>&l

56、t;p>  本研究的目的是:(1)設(shè)計具有低功耗,無線通信智能閥門控制器;(2)設(shè)計一個能源管理系統(tǒng),使單機每個閥門控制器操作;(3)制定一個溝通協(xié)議,連接中央控制器的閥門控制器領(lǐng)域。</p><p><b>  系統(tǒng)設(shè)計</b></p><p>  由于這個系統(tǒng)應(yīng)用于在果園,溫室,景觀和苗圃,無線網(wǎng)絡(luò)必須是多面手,足以在許多環(huán)境中運作。網(wǎng)狀網(wǎng)絡(luò)使信息傳遞從一個

57、節(jié)點通過路由通過中間節(jié)點到任何網(wǎng)絡(luò)中的其他節(jié)點。如圖1:這個系統(tǒng)的一個優(yōu)點是增加了不使用大功率發(fā)射而增加無線電網(wǎng)絡(luò)的覆蓋范圍。這使得在節(jié)點安置上具有更大的靈活性,因為表面或信號弱得節(jié)點可能由于通信路線而受到阻隔。另一個優(yōu)點是裁員;一個失敗的節(jié)點沒有禁用網(wǎng)絡(luò),因為多個路由路徑存在。在這里介紹的系統(tǒng),操作員進入現(xiàn)場控制器的中央節(jié)點地址和灌溉計劃,以及它們分發(fā)給網(wǎng)絡(luò)中的單個節(jié)點??蛇x的個人電腦可以提供一個圖形界面,但不要求操作該系統(tǒng)。<

58、/p><p><b>  硬件</b></p><p>  藍牙協(xié)會為基礎(chǔ)的技術(shù)進行了審議,因為它們已在農(nóng)業(yè)環(huán)境上進行了測試測試。藍牙被認為是沒有這方面發(fā)展的,由于其高能耗,短距離,并為網(wǎng)狀路由網(wǎng)絡(luò)缺乏適當?shù)闹С帧R粋€定制的系統(tǒng)由于沒有選擇實施穩(wěn)健的網(wǎng)狀網(wǎng)絡(luò)軟件的復(fù)雜性,只需要一個微控制器和無線收發(fā)器。相反,商用低功率,網(wǎng)狀網(wǎng)絡(luò)技術(shù)進行了測試,性能不錯。</p>

59、;<p>  我們第一代的無線原型設(shè)計采用ZigBee演示板。該網(wǎng)的網(wǎng)絡(luò)通信協(xié)議的處理由公司的ZigBee無線網(wǎng)絡(luò)標準的實施。當時,我們發(fā)現(xiàn)了執(zhí)行不支持電池供電的路由器,可以睡之間的無線電通訊。雖然網(wǎng)狀網(wǎng)絡(luò)是一個的主要特征,路由器一般都需要有主線路電源。有一條規(guī)定適用于電池供電的“像燈塔”網(wǎng)絡(luò)允許,但沒有ZigBee的供應(yīng)商可以發(fā)現(xiàn),在已實施的軟件。這是決定使用,而不是企圖實施這一系統(tǒng)的時間同步不同的技術(shù)。</p&g

60、t;<p>  我們的第二代樣機采用低功率無線模塊。專為電池供電的網(wǎng)專門低功率無線模塊,這樣通常被稱為一個“刺”,這是定義為一個小顆?;蛐“唿c,因為這是在傳感器的研究結(jié)果僅在立方毫米大小的目標。這些模塊進行編程的Tiny OS,一個開放原始碼作業(yè)系統(tǒng)的無線傳感器書面。微小的操作系統(tǒng)包括其自己的通</p><p>  圖1 網(wǎng)狀網(wǎng)的布設(shè)無線閥門控制</p><p>  信協(xié)議,

61、但運行的TinyOS的ZigBee兼容的模塊正在開發(fā)。ZigBee的規(guī)定將提供行業(yè)標準化的好處,如供應(yīng)商產(chǎn)品的互操作性,安全性和市場性。第二代樣機進行了測試使用兩種通信協(xié)議:廣播消息組件滴灌時使用的現(xiàn)場控制器發(fā)送信息到下游閥門控制器,以及一個網(wǎng)狀路由例程多跳被用來發(fā)送來自上游的消息閥門控制器到現(xiàn)場控制器。網(wǎng)狀網(wǎng)的測試表明,從現(xiàn)場控制器發(fā)送消息給閥門控制器不可靠或有效率的預(yù)期。</p><p><b> 

62、 軟件</b></p><p>  該網(wǎng)的網(wǎng)絡(luò)協(xié)議是處理與無線模塊包括軟件。形成和網(wǎng)狀網(wǎng)運行情況如下。接通電源后,自動開始成立的節(jié)點通過發(fā)送“路由更新”的信息網(wǎng)絡(luò)。路由更新信息進行廣播,使每個節(jié)點相鄰節(jié)點可以決定的“成本”相互之間的路由消息。這些資料是用來確定從一個遠程節(jié)點閥門控制器的基本節(jié)點現(xiàn)場控制器路由信息的最佳途徑。每個遠程節(jié)點上創(chuàng)建一個路由表,其中包括為每個相鄰的節(jié)點條目。每個鄰居是一個路由成

63、本相關(guān)指標的基礎(chǔ)上,最短路徑到基地和鏈路質(zhì)量指標發(fā)送/接收成功率從路由更新消息。遠程節(jié)點傳輸?shù)臄?shù)據(jù)信息傳遞給鄰居用最低的成本稱為母公司。如果傳輸失敗,該消息被重新路由到下一個成本最低的鄰居。路由更新信息轉(zhuǎn)交了每5分鐘,以確保在每個節(jié)點的路由表進行了更新的網(wǎng)絡(luò)條件變化,減少的可能性,即興改道是必要的。一旦建立了這些路由路徑,消息可以被發(fā)送到相應(yīng)的上游或下游遠程從底部到遙遠。上游的訊息已通過跳從一個節(jié)點到最佳路由的下沿,直至達成了基本節(jié)點。

64、下游節(jié)點之間的消息只是跳沿上游消息反向節(jié)點,直到到達目的地的路線。該基地的現(xiàn)場控制器編程,運行節(jié)點制造商的軟件。遠程節(jié)點進行編程,一個與TinyOS的編程中使用的C語言擴展編寫的代碼。用于灌溉</p><p>  另一個基于無線模塊后獲得通過,我們的第三代閥門控制器設(shè)計,在這里討論。移動這些模塊的理由是網(wǎng)狀網(wǎng)絡(luò)軟件,仍然使用TinyOS的消息,但包括改善下游,該公司有興趣開發(fā)農(nóng)業(yè)監(jiān)測和控制產(chǎn)品,從而提供了一個很好

65、的機會,并增加未來商業(yè)化合作的可能性。如圖2這里設(shè)備使用的無線模塊,工作在916兆赫。</p><p>  圖2 閥門控制器框圖的主要成分</p><p>  原型電路板提供了弩技術(shù)的閥門控制器遠程節(jié)點的發(fā)展。它包括一個51針連接器接口與無線模塊,3.0 V電壓調(diào)節(jié)器,熱敏電阻,信號多路復(fù)用器和輸入/輸出I/ O的接線端子。圖2顯示了電路元件和連接的簡化框圖的閥門和傳感器。閥門驅(qū)動和傳感器

66、激勵的控制,由單片機輸出的無線模塊。輸入通道多工器允許微控制器上的連續(xù)測量,包括板級溫度,太陽能電池板電壓和六個外部傳感器的信號,每一個單八模擬到數(shù)字轉(zhuǎn)換器ADC的輸入。第二個ADC輸入測量電池電壓。一個閥門的開關(guān)電路相連的原型板閥控制。</p><p>  一個7.2伏,一七零毫安鎳鎘電池由兩個3.6伏電池串聯(lián)和一個200毫瓦13.4伏,15毫安太陽能電池板從6.7V的兩個系列面板構(gòu)造構(gòu)造被選定為每年更換電池不

67、連續(xù)節(jié)點操作。被選中的太陽能電池板充電過程中,提供比預(yù)期的9伏電池的最大電壓較高的峰值電壓,電流,將提供足夠的費用,以補充由節(jié)點所使用的所有能量。一種鎳鎘電池的選擇,因為它更能適應(yīng)多收,一般不超過鎳金屬氫化物和鋰離子電池化學(xué)昂貴,并已提供脈沖高一低內(nèi)阻當前用更少的電壓降(林登和Reddy,2001)。鎳鎘的缺點是自放電約15%至每月20%,較鎳氫電池和鋰離子的大小和處置的限制。淺從低功耗電路電壓放電也可能會導(dǎo)致抑郁癥通常被稱為記憶效應(yīng),

68、這將減少電池的有效容量。不過,淺放電/充電周期可能會增加鎳鎘電池的使用壽命,使每天數(shù)千次,超過從深放電循環(huán)的預(yù)期。</p><p>  許多無線傳感器主要是用于僅3V電壓,但是一個更高的水平的操作,用在這里,以提供為一個1英寸或1/8-inch閉鎖電磁閥提供足夠的電壓。該閥門被評為12 VDC或以上,但有效地操作在7.2五閥控制電壓可以很容易地使用電池或充電slightlylarger與存儲電容泵提高。雙向電流來

69、控制閥門的H橋開關(guān)電路的兩個N溝道金屬氧化物半導(dǎo)體場效應(yīng)晶體管和兩個P溝道MOSFET組成。另外兩個N溝道MOSFET的反向信號微控制器驅(qū)動的P-溝道MOSFET。四個二極管被用來抑制感應(yīng)電壓時產(chǎn)生的閥門關(guān)閉MOSFET的峰值。閥門被打開或關(guān)閉一個由電池80ms脈沖。</p><p>  無線模塊有一個射頻1/4-wave或1/2-wave偶極天線使用。電路元件被安置在一個翻蓋式聚碳酸酯外殼。提供在戶外測試污垢和

70、水分保護。在鉆洞的天線,閥門,電線盒和傳感器。該天線是直接安裝在框,電纜端口被用來提供一個閥門和傳感器導(dǎo)線密封。一個基本節(jié)點的無線模塊和RS- 232網(wǎng)關(guān)組成的連接通過串行電纜連接到嵌入式控制器,它作為現(xiàn)場控制器充當了遠程網(wǎng)絡(luò)節(jié)點。在現(xiàn)場控制器是用一個12 V電源供電電源,但也可能使用的太陽能電池板充電器12V的鉛酸電池。一個高效率開關(guān)穩(wěn)壓器提供5 V至嵌入式控制器,以及一個3 V線性穩(wěn)壓器提供的電源為基本節(jié)點。</p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論