版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 畢業(yè)設(shè)計(jì)(論文)外文文獻(xiàn)翻譯</p><p> 基于拉格朗日乘數(shù)法的框架結(jié)構(gòu)合理線剛度比的研究</p><p> 本文譯自:Zhiqin LIU,Guoliang BAI. Study on Reasonable Linear Stiffness Ratio in Frame Structure Based on Lagrange Multiplier Metho
2、d[J].Information Management,Innovation Management and Industrial Engineering,2008.ICIII’08.International Conference on,2008,9(6):368-371.</p><p> 【摘要】框架結(jié)構(gòu)是一種常見的多層高層建筑結(jié)構(gòu);列的合理線剛度比研究是框架結(jié)構(gòu)優(yōu)化設(shè)計(jì)中的一個重要方面。本論文研究合理線剛
3、度比時,框架梁、柱的側(cè)移剛度根據(jù)拉格朗日乘數(shù)法結(jié)構(gòu)優(yōu)化的理論和在框架梁、柱的總物質(zhì)的量一定的前提下,取得最高值。與傳統(tǒng)的估計(jì)方法和試算梁柱截面尺寸不同,梁、柱的合理的截面尺寸可以在初步設(shè)計(jì)階段由派生的公式計(jì)算。這種方法不僅作為計(jì)算框架梁、柱的截面尺寸基礎(chǔ),確認(rèn)初步設(shè)計(jì)階,而且也被用做類似的結(jié)構(gòu)梁柱合理線剛度比研究的參考。此外,在調(diào)整幀梁、柱的截面尺寸的方法的基礎(chǔ)上,降低柱的軸向的壓縮比,從而達(dá)到剪切壓縮比和提高結(jié)構(gòu)的延展性。</p
4、><p> 【關(guān)鍵詞】 拉格朗日數(shù)乘法 框架結(jié)構(gòu) 剛度比 截面尺寸</p><p><b> 1 引言</b></p><p> 在混凝土框架結(jié)構(gòu)初步設(shè)計(jì)的期間,通常,框架梁截面高度通過跨度來估算,和截面寬度根據(jù)高寬比估算; 框架柱的截面尺寸是根據(jù)柱軸壓縮的支持柱的面積的比率估算[1]。然而,在估計(jì)過程中,初步設(shè)計(jì)
5、階段中的一個重要的鏈,未考慮到柱側(cè)移剛度的影響[2]。列側(cè)移剛度越大,結(jié)構(gòu)層間位的剛度越大,剪切型框架結(jié)構(gòu)的層間位移將越較小。所以,總結(jié)構(gòu)越小的側(cè)向位移將減少地震災(zāi)害[3]所造成的損失。論文的核心是如何得到列側(cè)移剛度的最大值。</p><p> 同時,列側(cè)移剛度的值與框架梁-柱線剛度直接相關(guān)。本論文的目的是為了得到一個合理的框架梁 - 柱的線剛度比,在某個控制范圍內(nèi)獲得列側(cè)移剛度的最大值。</p>
6、<p> 計(jì)算列橫向位移的方法有兩種方法:剛度拐點(diǎn)點(diǎn)法和修改拐點(diǎn)法。拐點(diǎn)的方法假定關(guān)節(jié)的旋轉(zhuǎn)角度為0(當(dāng)梁柱線性剛度比是大于或等于3時,柱的上端和下端的關(guān)節(jié)的旋轉(zhuǎn)角度可以取為0,因?yàn)樗鼘?shí)際上是相當(dāng)?。戳旱膹澢鷦傂员灰暈闊o窮大。拐點(diǎn)的方法主要是應(yīng)用于具有比較少層的框架結(jié)構(gòu)。但對于多層、高層框架結(jié)構(gòu),增加柱截面會導(dǎo)致梁柱線剛度比小于3,在水平荷載作用下,框架結(jié)構(gòu)的所有關(guān)節(jié)的旋轉(zhuǎn)角度的橫向位移會發(fā)生不可忽視。因此,一位日本教
7、授武藤提出修改拐點(diǎn)法[4],即D-值方法。本文采用D-值列側(cè)移剛度的計(jì)算法,因?yàn)樗赜诙鄬印⒏邔涌蚣芙Y(jié)構(gòu)。</p><p> 少數(shù)在國內(nèi)外對框架梁柱合理線剛度比的研究,只有梁七黹,源于列側(cè)移剛度的計(jì)算方法,比D-值法更加應(yīng)用廣泛;申得氏指出在多層、高層框架結(jié)構(gòu)的柱側(cè)向剛度計(jì)算中存在的問題,補(bǔ)充和修改底部和頂部層的列側(cè)向剛度計(jì)算公式;應(yīng)用于史密斯和庫爾博士法,焱鑫田源于梁 - 柱線剛度比的合理值,由計(jì)算的最大等
8、效剛度框架柱。</p><p> 本文計(jì)算列側(cè)移剛度的最大值,第一次通過采用在約束條件下結(jié)構(gòu)優(yōu)化理論,那就是,約束Lagrange乘子法優(yōu)化理論對框架梁-柱的材料是有一定價(jià)值[5]。因此,混凝土框架梁-柱的合理線剛度比在一定范圍內(nèi)可以得到。在初步設(shè)計(jì)和參考階段,得出的結(jié)論可以作為梁-柱的截面尺寸的一個決定性因素,類似在梁柱框架結(jié)構(gòu)設(shè)計(jì)的研究</p><p> 2 用約束拉格朗日乘子法計(jì)
9、算框架梁柱的合理線性剛度比</p><p> 2.1 側(cè)向剛度的框架梁-柱的D值法</p><p> 以標(biāo)準(zhǔn)層框架結(jié)構(gòu)的中間關(guān)節(jié)作為一個例子,由D值法計(jì)算出梁-柱的側(cè)向位移剛度:</p><p> :關(guān)節(jié)旋轉(zhuǎn)的影響系數(shù);</p><p> :框架柱的線性剛度;</p><p><b> :層高;&l
10、t;/b></p><p> :梁-柱的平均線性剛度;</p><p><b> :梁柱的線性剛度;</b></p><p> 假設(shè)所有的梁-柱線性剛度都是,所以,</p><p> 考慮到框架梁鑄在原址層的鋼筋混凝土框架結(jié)構(gòu)受限的影響,中間框架梁的轉(zhuǎn)動慣量[6];</p><p>
11、 是梁截面的轉(zhuǎn)動慣量,所以,</p><p> 因此,標(biāo)準(zhǔn)的框架柱側(cè)移剛度得出以下公式:</p><p> 因?yàn)?側(cè)移剛度列進(jìn)一步推導(dǎo)出下述公式:</p><p> 2.2 基于拉格朗日乘數(shù)法得到合理線剛度比</p><p> 為了獲得框架柱的側(cè)移剛度最大D值,我們需要找到目標(biāo)函數(shù):</p><p><
12、b> ?。?)</b></p><p> 假設(shè)截面框架梁是和截面框架柱是,在材料總量是A的前提下,在材料總量是A的前提下,公式滿足這個約束條件,得:</p><p><b> (2)</b></p><p> 通過拉格朗日數(shù)乘法來獲得目標(biāo)函數(shù):</p><p><b> 因?yàn)?lt;/
13、b></p><p><b> 所以</b></p><p><b> ?。?)</b></p><p> E : 混凝土的彈性模量;</p><p> 同理,柱線性剛度可以用下面的公式推導(dǎo):</p><p><b> 因此我們得到:</b>
14、;</p><p><b> (4)</b></p><p> 把公式(3)和公式(4)代入公式(2),得,</p><p><b> 可以進(jìn)一步推導(dǎo):</b></p><p><b> ?。?)</b></p><p><b> (T
15、是定值)</b></p><p> 在一定約束條件下,根據(jù)拉格朗日數(shù)乘法,目標(biāo)函數(shù)可以由公式(5)得到:</p><p><b> ?。?)</b></p><p> 分別對求各自的偏導(dǎo),并且令其偏導(dǎo)數(shù)為0,得:</p><p><b> 整理上述方程,得,</b></p&g
16、t;<p><b> ?。?)</b></p><p> 從等式(7)對 開根號,得:</p><p><b> ?。?)</b></p><p> 上面的公式是在框架結(jié)構(gòu)標(biāo)準(zhǔn)層中間接頭的柱的側(cè)移剛度是最大時的梁-柱線性剛度比,即合理梁柱線剛度比。</p><p> 同理,我們可
17、以在框架結(jié)構(gòu)柱的側(cè)移剛度是最大時,得出標(biāo)準(zhǔn)層側(cè)接頭的合理線剛度比。</p><p><b> ?。?)</b></p><p> 3 工程梁柱合理線剛度的應(yīng)用</p><p> 3.1多層和高層框架結(jié)構(gòu)的合理線剛度應(yīng)用</p><p> 在消耗材料量是一個定值前提下,框架結(jié)構(gòu)的標(biāo)準(zhǔn)框架層的中間關(guān)節(jié)作為梁-柱線性剛度
18、比滿足式(8),且框架結(jié)構(gòu)標(biāo)準(zhǔn)層框架側(cè)接頭作為線性剛度比滿足公式(9),那么框架結(jié)構(gòu)側(cè)向位移剛度將一直保持最大值。</p><p> 顯然,那么總的側(cè)向位移是最小的結(jié)構(gòu)就在這時[7]; 其工程應(yīng)用價(jià)值不言而喻。</p><p> 在一般的框架結(jié)構(gòu)中,柱高和梁跨度滿足下面的公式:</p><p> 梁-柱的截面高度比滿足下式[8]:</p><
19、;p> 對于框架結(jié)構(gòu)的標(biāo)準(zhǔn)層的中間節(jié)點(diǎn),我們可以由等式(8)推出:</p><p><b> ?。?0)</b></p><p> 上文中的計(jì)算公式在合理線剛度比的梁-柱框架結(jié)構(gòu)的標(biāo)準(zhǔn)層中間接頭的應(yīng)用范圍。</p><p> 結(jié)果表明,梁-柱的截面尺寸可被相應(yīng)的計(jì)算出來,如果梁-柱線性剛度比滿足等式(10)時,框架柱的側(cè)向位移則是最
20、大值。</p><p><b> 3.2 例子</b></p><p> 在一般負(fù)載下,一個10層的、4跨度的鋼筋混凝土澆筑在原址框架結(jié)構(gòu),每層的高度是3.6米,梁跨度為7.2m,梁-柱的混凝土強(qiáng)度等級是一樣的。在材料量是定值的前提下,中間框的標(biāo)準(zhǔn)層梁 - 柱中間關(guān)節(jié)的截面尺寸通用估計(jì)方法估計(jì),然后將估計(jì)值與由式8和式9計(jì)算的截面尺寸的結(jié)果相比較。根據(jù)一般方法估算
21、梁-柱的截面尺寸:</p><p><b> 梁:</b></p><p><b> 柱:</b></p><p> 則梁-柱材料的量一共是:</p><p> 那么,柱側(cè)向位移的剛度比是:</p><p> 然而,線性剛度比是在等式10的應(yīng)用范圍之內(nèi)。</p
22、><p> 基于等式10,在A是定值的條件下,計(jì)算梁柱的截面尺寸,且調(diào)整梁柱的截面尺寸,如下:</p><p><b> 然后,</b></p><p> 現(xiàn)在側(cè)向位移剛度是:</p><p><b> 然后,顯然,</b></p><p><b> 此時,&
23、lt;/b></p><p> 梁柱的線性剛度比在等式10的范圍之內(nèi),所以它就是合理線性剛度比并且在工程應(yīng)用范圍內(nèi)。</p><p><b> 4 結(jié)論</b></p><p> ?。?)在上述的例子可以得出:在梁柱的材料消耗總量A是定值前提下,在標(biāo)準(zhǔn)框架結(jié)構(gòu)的最初設(shè)計(jì)階段,如果梁柱的截面尺寸可以調(diào)整,梁寬保持不變。在這個例子中,梁寬
24、保持不變,把柱高從650毫米調(diào)整到600毫米,然后把柱高從500毫米調(diào)整到560毫米,如果柱截面寬度保持不變,則會得到柱側(cè)向位移剛度的最大值。</p><p> 證明梁柱的線性剛度比此時滿足等式(10),所以在標(biāo)準(zhǔn)框架結(jié)構(gòu)的最初設(shè)計(jì)階段,得到的梁柱截面尺寸在應(yīng)用范圍內(nèi)的合理線性剛度比內(nèi)。</p><p> (2) 該研究方法通過拉格朗日數(shù)乘法來獲得柱側(cè)向位移剛度最大值被廣泛應(yīng)用于研究類
25、似的框架結(jié)構(gòu)。例如,可以用于研究中間框架底部、側(cè)向框架、類似工程結(jié)構(gòu)的合理線性剛度比</p><p> (3) 這個研究的結(jié)論可以為框架結(jié)構(gòu)其他方面的研究提供一定的參考。例如,通過調(diào)整截面尺寸獲得柱側(cè)向位移剛度的最大值在框架結(jié)構(gòu)的抗震設(shè)計(jì)中變得越來越重要。增加柱的截面尺寸可以有效地控制軸壓比,剪壓縮比,從而提高結(jié)構(gòu)延性和減少地震災(zāi)害造成的損失。</p><p><b> 參考
26、文獻(xiàn)</b></p><p> [1] Tao Ji, Zhixiong Huang, Multi-story and High-rise Reinforced Concrete Structure Design, Michanical Industry Publishing House, Beijing, 2007.</p><p> [2] Shihua Bao, Hi
27、gh-rise Building Structure of New Edition.Water Resource and Hydropower Publishing House of China, Beijing, 2005.</p><p> [3] Ahmed Ghobarah and A. Said, “Shear strengthening of Beam-column Joints”, Journal
28、 of Engineering Structures,2002, 24(7), pp.881-888.</p><p> [4] Ahmed Ghobarah, Seism Resistance Design & Seism Resistance Methods [M], Maruzen Company, Limited. 1963.</p><p> [5] Aichuan.
29、 Jiang, Structural Optimization Design, Qinghua Publishing House, Beijing, 1986.</p><p> [6] Xi’an Zhao, High-rise Reinforced Concrete Structure Design, Architecture&Building Press Beijing, China, 2003.<
30、/p><p> [7] P.G. Bakir and H.M. Boduro.lu, “A New Design Equation for Predicting the Joint Shear Strength of Monotonically Loaded Exterior Beam-column Joints”, Journal of Engineering Structures, 2002, 24(8), p
31、p.1105-1117.</p><p> [8] Huanling Meng and Pusheng Shen, “Research on Behaviors of Frame-shear Wall Structures Based on Stiffness Degradation”, Journal of Railway Science and Engineering,2006, 3(1), pp.12–1
32、7.</p><p> Study on Reasonable Linear Stiffness Ratio in Frame Structure Based on Lagrange Multiplier Method</p><p> Zhiqin LIU,Guoliang BAI. Study on Reasonable Linear Stiffness Ratio in Fram
33、e Structure Based on Lagrange Multiplier Method[J].Information Management,Innovation Management and Industrial Engineering,2008.ICIII’08.International Conference on,2008,9(6):368-371.</p><p><b> Abstr
34、act</b></p><p> Frame structure is a common structure of multistory and high-rise buildings; research on column’s reasonable linear stiffness ratio is an important aspect on frame structure optimizati
35、on design. The thesis researches on reasonable linear stiffness ratio when the frame beam-column’s lateral displacement stiffness reaches its maximum value based on Lagrange Multiplier Method structure optimization theor
36、y and on the premise that total material quantity of framework beam-column is definite. Differen</p><p> 1 Introduction</p><p> During the preliminary design of concrete frame structures, gene
37、rally, the section height of the frame beam is estimated by its span, and section width is estimated according to the height-width ratio; the section dimension of the frame column is estimated by the column axial compres
38、sion ratio according to the column-supported floor area [1]. Therefore, effects from the column lateral displacement stiffness [2] are not taken into consideration in the process of section estimation, an important c<
39、/p><p> Meanwhile, column lateral displacement stiffness value is directly related with linear stiffness of frame beam-column. </p><p> The purpose of the thesis is to get a reasonable linear sti
40、ffness ratio of frame beam column within a certain control range after deriving the maximum value of column lateral displacement stiffness.There are two methods of calculating the column lateral displacement stiffness-in
41、flexion point method and modified inflexion point method. Inflexion point method assumes joint rotation angle as 0 ( when linear stiffness ratio of beam-column is more than or equal to 3, joint rotation angle of upper an
42、d</p><p> But for multi-story and high-rise frame structures, since increasing column section makes beam-column linear stiffness ratio be less than 3, lateral displacement will occur on frame structures and
43、 rotation angle of all joints can not be neglected under horizontal load. Accordingly, Muto, a Japanese professor puts forward the modified inflexion point method [4], namely D-value method.The thesis adopts D-value meth
44、od of calculating the column lateral displacement stiffness because it focuses on mu</p><p> Research on reasonable linear stiffness ratio of frame beam-column is few at home and abroad, only Liang Qizhi de
45、rives the calculation method of column lateral displacement stiffness which is applied more widely than D-value;Shen Dezhi points out the existing problems in column lateral stiffness calculation for multi-story and high
46、-rise frame structure, supplements and modifies the column lateral stiffness calculation formula on bottom and top layer;applying Smith & Coull method, Yanxin Tian der</p><p> The thesis calculates the
47、maximal value of column lateral displacement stiffness for the first time by adopting the structure optimization theory under constraint conditions, that is, the constraint Lagrange Multiplier Optimization Theory when th
48、e material of frame beam-column is a definite value [5]. Thus, a reasonable lines stiffness ratio of concrete frame beam-column within a certain scope can be obtained.The conclusion can be taken as a decisive factor for
49、section dimension of frame beam-co</p><p> 2 Reasonable Linear Stiffness Ratio of Frame Beam-column Calculated by Constraint Lagrange Multiplier Method</p><p> 2.1 Lateral Displacement Stiffne
50、ss of Frame Beam-Column by D Value Method</p><p> Taking the middle joint of standard floor frame structure as an example, lateral displacement stiffness of beam-column calculated by D value method:</p&g
51、t;<p> : Influence coefficient of joint rotation;</p><p> : Linear stiffness of frame column; </p><p> : Story height; </p><p> : Average linear stiffness of floor beam-c
52、olumn;: Linear stiffness of beam-column;Suppose all linear stiffness of beam-column is ,Then,</p><p> Considering the restriction effect on frame beam from cast-in-situ floor of reinforced concrete frame st
53、ructures, the inertia moment of the middle frame beam [6];</p><p> is the inertia moment of the beam section, then,</p><p> Thus, lateral displacement stiffness of standard frame column is der
54、ived by the following formula: </p><p> For , lateral displacement stiffness of column</p><p> is further derived from the following formula:</p><p> 2.2 Deriving the Reasonable
55、Linear Stiffness Ratio Based On Lagrange Multiplier Method</p><p> In order to get the maximal lateral displacement stiffness of frame column D value, we need to find the objective function:</p><
56、p><b> (1)</b></p><p> Suppose the section of frame beam is and section of frame column is , on the premise of total amount of material is definite value A, formula meets the constraint con
57、dition, then, </p><p><b> (2)</b></p><p> To find objective function by Lagrange Multiplier Method:</p><p><b> For, </b></p><p><b> T
58、hen,</b></p><p><b> (3)</b></p><p> E : Elastic modulus of concrete; </p><p> In the same way, the linear stiffness of column is derived by the following formul
59、a:</p><p> Therefore we get:</p><p><b> (4)</b></p><p> It can be further derived:</p><p><b> (5)</b></p><p> (T is a definite
60、 value) According to the Lagrange Multiplier Method</p><p> under certain constraints, the objective function can be derived by formula (5):</p><p><b> (6)</b></p><p>
61、 Calculation the partial derivatives of ,</p><p> respectively and make the results equal to 0, then,</p><p> Further derive the above formula, then,</p><p><b> (7)</b&
62、gt;</p><p> Derive from Eq.7, </p><p><b> (8)</b></p><p> The above formula is linear stiffness ratio of beam-column standard floor middle joint in frame structure w
63、hen the lateral displacement stiffness of column is maximal, namely reasonable linear stiffness ratio of beam-column. In the same way, we can derive the reasonable linear stiffness ratio of standard floor side joint in t
64、he frame structure when the lateral displacement stiffness of column is maximal.</p><p><b> (9)</b></p><p> 3 Application of Reasonable Linear Stiffness of Beam-column in Engineeri
65、ng</p><p> 3.1 Application of Reasonable Linear Stiffness in Multi-layer and High-rise Frame Structures</p><p> On the premise that consumed material amount is a definite value, to the middle
66、joints of standard frame floor of frame structures as linear stiffness ratio of beam-column satisfies the formula (8) and to side joint of frame standard floor of frame structures as linear stiffness ratio satisfies the
67、formula (9), the lateral displacement stiffness of frame structures will remain the maximum value all the time. Obviously, then the total lateral displacement of the structure is minimal at this momen</p><p>
68、; The section height ratio of beam-column satisfies the formula [8]:</p><p> To standard floor middle joint of frame structure, it can be derived from Eq.8,</p><p><b> (10)</b><
69、;/p><p> The formula hereinabove is the applied scope of reasonable linear stiffness ratio of beam-column standard floor middle joint in frame structures. The result shows that the section dimension of beam-co
70、lumn can be calculated accordingly if only the linear stiffness ratio of beam-column satisfies Eq.10 and hence the lateral displacement stiffness of the frame column is maximal.</p><p> 3.2 Example</p>
71、;<p> A 10-story 4-span reinforced concrete cast-in-situ frame structure under general load, the height of each story is 3.6m, beam span is 7.2m, and concrete strength grade of beam-column is the same. On the pre
72、mise that material amount is a definite value, the section dimension of beam-column middle joint of standard floors in middle frame is estimated by general estimation method and then compare it with calculated section di
73、mension by the results of Eq.8 and Eq.9. Estimate the section dimension of</p><p> Beam: Column:</p><p> Then the material amount of beam-column is </p><p> Therefore, the lat
74、eral displacement stiffness of column is</p><p> However, the linear stiffness ratio is beyond the application scope of Eq.10.On the basis of Eq.10, calculate the section dimension of beam-column under the
75、condition that A is a definite value, and adjust the section dimension of beam-column, as:,Then,</p><p> Now the lateral displacement stiffness is </p><p> Then, obviously, </p><p&
76、gt;<b> Now, </b></p><p> The linear stiffness of beam-column is within the scope of Eq.10, so it is reasonable linear stiffness ratio and within the engineering application scope.</p>&l
77、t;p> 4 Conclusion</p><p> (1) It can be seen from the example hereinabove: on the premise that the total consumed material quantity A of frame beam-column is a definite value during the preliminary desi
78、gn in the standard frame structure, the beam width remains unchangeable if the section dimension of the beam-column is adjusted slightly. In this example, beam width remains unchangeable, adjust the column height from 65
79、0mm to 600mm and then adjust column height from 500mm to 560mm if the column dimension width remains unc</p><p> (2) The research method obtaining the maximum value of column lateral displacement stiffness
80、by Lagrange Multiplier Method can be widely used to research on the similar frame structures. For example it can be used to research the reasonable linear stiffness ratio of middle frame bottom, side frame, and similar e
81、ngineering structures.</p><p> (3) The conclusion of the research will provide certain reference to research on other aspects of frame structure. For example, the method obtaining the maximum value of colum
82、n lateral displacement stiffness by adjusting its section dimension has great importance in anti-seismic design of frame structures. Increasing section dimension of columns can effectively control the axial compression r
83、atio and shear compression ratio, and hence improve structural ductility and reduce loss due to earthquak</p><p> References</p><p> [1] Tao Ji, Zhixiong Huang, Multi-story and High-rise Reinf
84、orced Concrete Structure Design, Michanical Industry Publishing House, Beijing, 2007.</p><p> [2] Shihua Bao, High-rise Building Structure of New Edition.Water Resource and Hydropower Publishing House of Ch
85、ina, Beijing, 2005.</p><p> [3] Ahmed Ghobarah and A. Said, “Shear strengthening of Beam-column Joints”, Journal of Engineering Structures,2002, 24(7), pp.881-888.</p><p> [4] Ahmed Ghobarah,
86、Seism Resistance Design & Seism Resistance Methods [M], Maruzen Company, Limited. 1963.</p><p> [5] Aichuan. Jiang, Structural Optimization Design, Qinghua Publishing House, Beijing, 1986.</p>&l
87、t;p> [6] Xi’an Zhao, High-rise Reinforced Concrete Structure Design, Architecture&Building Press Beijing, China, 2003.</p><p> [7] P.G. Bakir and H.M. Boduro.lu, “A New Design Equation for Predicting th
88、e Joint Shear Strength of Monotonically Loaded Exterior Beam-column Joints”, Journal of Engineering Structures, 2002, 24(8), pp.1105-1117.</p><p> [8] Huanling Meng and Pusheng Shen, “Research on Behaviors
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于拉格朗日乘數(shù)法的框架結(jié)構(gòu)合理線剛度比的研究外文翻譯.docx
- 基于拉格朗日乘數(shù)法的框架結(jié)構(gòu)合理線剛度比的研究外文翻譯.docx
- 應(yīng)用數(shù)學(xué)外文翻譯--基于拉格朗日乘數(shù)法的框架結(jié)構(gòu)合理線剛度比的研究
- 應(yīng)用數(shù)學(xué)外文翻譯--基于拉格朗日乘數(shù)法的框架結(jié)構(gòu)合理線剛度比的研究
- 拉格朗日乘數(shù)法應(yīng)用的推廣
- 拉格朗日乘數(shù)法應(yīng)用的推廣
- 拉格朗日乘數(shù)法的推廣及應(yīng)用
- 拉格朗日乘數(shù)法在經(jīng)濟(jì)最優(yōu)化中的應(yīng)用
- 基于增廣拉格朗日法的圖像復(fù)原方法與應(yīng)用.pdf
- 18676.超圖的拉格朗日研究
- 拉格朗日插值法與牛頓插值法的比較
- 基于改進(jìn)拉格朗日松弛法的機(jī)組組合優(yōu)化方法.pdf
- 基于MMC模型的稀疏拉格朗日模擬研究.pdf
- 拉格朗日系統(tǒng)的協(xié)同控制研究.pdf
- 18909.對超圖的拉格朗日的研究
- 基于拉格朗日松弛法的受限低代價(jià)組播路由算法.pdf
- 基于剛度比的斷柱頂升改造的框架結(jié)構(gòu)抗震分析.pdf
- 基于拉格朗日松弛法的停電系統(tǒng)機(jī)組恢復(fù)順序優(yōu)化方法研究.pdf
- 基于梁柱剛度比、柱梁強(qiáng)度比對框架結(jié)構(gòu)破壞模式的影響研究.pdf
- 16560.拉格朗日系統(tǒng)的濾波問題研究
評論
0/150
提交評論