版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 原文說明</b></p><p> 原文說明的內(nèi)容是:文章闡述了電機的工作原理、發(fā)展過程、以及伺服電機的工作控制原理。并且舉例說明了伺服電機所適用的場合。</p><p> 題名Servomotor’s Elements and Applications</p><p> 作者 NEWMARKER</p
2、><p><b> 來源 佳工機電網(wǎng)</b></p><p> How Does a Motor Work?</p><p> An electric motor converts electricity into mechanical motion. Electric motors are used in household applian
3、ces, electric fans, remote-controlled toys, and in thousands of other applications. </p><p> The electric motor grew out of one of the earliest discoveries in electric science—Arago’s rotations. In 1824, Fr
4、ancois Arago discovered that a magnetic needle suspended over a copper disk would rotate when the disc was spun. The next year, computer pioneer Charles Babbage and astronomer John Herschel showed that the action could b
5、e reversed: spinning a more powerful magnet above the copper disk would spin the copper disc. Then, in 1831, Michael Faraday conducted experiments that helped explain </p><p> Over the next few decades many
6、 inventors made improved devices for turning electricity into motion. One of these was Hippolyte Pixii’s 1832 improvement called the commutator, which switched the flow of current between two or more sets of stationary e
7、lectromagnets to keep a motor continuously rotating. Thomas Davenport was the first to build an electric motor large enough to be used in industry, and he was also the first to seek a patent on a motor. Soon electric mot
8、ors were being used for such t</p><p> An important change came in the later 1880s and 1890s, when electric power companies began considering the switch to alternating current. Alternating current was perfe
9、ct for the distribution of electric power over long distances, and it worked well with the Edison electric lamp, but no practical AC motor existed until the works of Galileo Ferraris in Italy and Nikola Tesla in the Unit
10、ed States. Tesla’s contributions are remembered today more than Ferraris’ in part because Tesla was subsequently </p><p> Servomotor</p><p> Servomotors are available as AC or DC motors. Early
11、 servomotors were generally DC motors because the only type of control for large currents was through SCRs for many years. As transistors became capable of controlling larger currents and switching the large currents at
12、higher frequencies, the AC servomotor became used more often. Early servomotors were specifically designed for servo amplifiers. Today a class of motors is designed for applications that may use a servo amplifier or a va
13、riable-fr</p><p> Some changes that must be made to any motor that is designed as a servomotor includes the ability to operate at a range of speeds without overheating, the ability to operate at zero speed
14、and retain sufficient torque to hold a load in position, and the ability to operate at very low speeds for long periods of time without overheating. Older-type motors have cooling fans that are connected directly to the
15、motor shaft. When the motor runs at slow speed, the fan does not move enough air to cool the</p><p> FIGURE 1-1 Typical PM servomotors</p><p> FIGURE 1-2 Cutaway picture of a permanent magnet
16、servomotor</p><p> Brushless Servomotors</p><p> The brushless servomotor is designed to operate without brushes. This means that the commutation that the brushes provided must now be provided
17、 electronically. Electronic commutation is provided by switching transistors on and off at appropriate times. Figure 1-3 shows three examples of the voltage and current waveforms that are sent to the brushless servomotor
18、. Figure 1-4 shows an example of the three windings of the brushless servomotor. The main point about the brushless servomotor is that it</p><p> FIGURE 1-3 (a) Trapezoidal input voltage and square wave cur
19、rent waveforms. (b) Sinusoidal input voltage and sinusoidal voltage and square wave output voltage waveforms. (c) Sinusoidal input voltage and sinusoidal current waveforms. This has become the most popular type of brushl
20、ess servomotor control.</p><p> Figure 1-4 shows three sets of transistors that are similar to the transistors in the output stage of the variable-frequency drive. In Fig. l-4a the transistors are connected
21、 to the three windings of the motor in a similar manner as in the variable-frequency drive. In Fig. l-4b the diagram of the waveforms for the output of the transistors is shown as three separate sinusoidal waves. The wav
22、eforms for the control circuit for the base of each transistor are shown in Fig. l-4c. Figure l-4d shows t</p><p> FIGURE 11-86 (a) Transistors connected to the three windings of the brushless servomotor. (
23、b) Waveforms of the three separate voltages that are used to power the three motor windings. (c) Waveforms of the signals used to control the transistor sequence that provides the waveforms for the previous diagram, (d)
24、Waveform of the overall back EMF</p><p> Servomotor Controllers </p><p> Servomotor controllers have become more than just amplifiers for a servomotor. Today servomotor controllers must be abl
25、e to make a number of decisions and provide a means to receive signals from external sensors and controls in the system, and send signals to host controllers and PLCs that may interface with the servo system. Figure 1-5
26、shows a picture of several servomotors and their amplifiers. The components in this picture look similar to a variety of other types of motors and controllers. </p><p> FIGURE 1-5 Example servomotors and am
27、plifiers</p><p> Figure 1-6 shows a diagram of the servomotor controller so that you can see some of the differences from other types of motor controllers. The controller in this diagram is for a DC servomo
28、tor. The controller has three ports that bring signals in or send signals out of the controller. The power supply, servomotor, and tachometer are connected to port P3 at the bottom of the controller. You can see that the
29、 supply voltage is 115-volt AC single phase. A main disconnect is connected in series with </p><p> The servomotor is connected to the controller at terminals 4 and 5. Terminal 5 is + and terminal 4 is - .
30、Terminal 3 provides a ground for the shield of the wires that connect the motor and the controller. The tachometer is connected to terminals 1 and 2. Terminal 2 is + and terminal 1 is - . The shield for this cable is gro
31、unded to the motor case. The wires connected to this port will be larger than wires connected to the other ports, since they must be capable of carrying the larger motor curr</p><p> FIGURE 1-6 Diagram of a
32、 servo controller. This diagram shows the digital (on-off) signals and the analog signals that are sent to the controller, and the signals the controller sends back to the host controller or PLC.</p><p> Th
33、e command signal is sent to the controller through port PI. The terminals for the command signal are 1 and 2. Terminal 1 is + and terminal 2 is - . This signal is a type signal, which means that it is not grounded or doe
34、s not share a ground potential with any other part of the circuit. Several additional auxiliary signals are also connected through port 1. These signals include inhibit (INH), which is used to disable the drive from an e
35、xternal controller, and forward and reverse commands (FAC </p><p> Port PI also provides several digital output signals that can be used to send fault signals or other information such as "drive runnin
36、g" back to a host controller or PLC. Port PI basically is the interface for all digital (on-off) signals. </p><p> Port P2 is the interface for analog (0-max) signals. Typical signals on this bus inclu
37、de motor current and motor velocity signals that are sent from the servo controller back to the host or PLC where they can be used in verification logic to ensure the controller is sending the correct information to the
38、motor. Input signals from the host or PLC can also be sent to the controller to set maximum current and velocity for the drive. In newer digital drives, these values are controlled by drive para</p><p> PWM
39、 Servo Amplifier </p><p> The PWM servo amplifier is used on small-size servo applications that use DC brush-type servomotors. Figure 1-7 shows a diagram for this type of amplifier. From the diagram you can
40、 see that single-phase AC power is provided to the amplifier as the supply at the lower left part of the diagram. The AC voltage is rectified and sent to the output section of the drive that is shown in the top right com
41、er of the diagram. The output section of the drive uses four IGBTs to create the pulse-width modulat</p><p> The remaining circuits show a variety of fault circuits in the middle of the diagram that origina
42、te from the fault logic board and provide an output signal at the bottom of the diagram. You should notice that the fault output signals include overvoltage, overtemperature, and overcurrent. A fourth signal is identifie
43、d as SSO (system status output), which indicates the status of the system as faulted anytime a fault has occurred. A jumper is used to set the SSO signal as an open collector output w</p><p> The input term
44、inals at the bottom right part of the diagram are used to enable or inhibit the drive, and to select forward amplifier clamp (FAC) or reverse amplifier clamp (RAC). The inhibit signal is used as a control signal, since i
45、t inhibits the output stage of the amplifier if it is high. The FAC and RAC signals limit the current in the opposite direction to 5%. </p><p> The input signals are shown in the diagram at the upper left s
46、ide. The VCS (velocity command signal) requires a +VCS and a -VCS signal to provide the differential signal. </p><p> FIGURE 1-7 Diagram of a pulse-width modulator (PWM) amplifier with a brush-type DC servo
47、motor</p><p> Applications for Servo Amplifiers and Motors </p><p> You will get a better idea of how servomotors and amplifiers operate if you see some typical applications. Figure 1-8 shows
48、an example of a servomotor used to control a press feed. In this application sheet material is fed into a press where it is cut off to length with a knife blade or sheer. The sheet material may have a logo or other adver
49、tisement that must line up registration marks with the cut-off point. In this application the speed and position of the sheet material must be synchronized </p><p> FIGURE 1-8 Application of a servomotor co
50、ntrolling the speed of material as it enters a press for cutting pieces to size.</p><p> An Example of a Servo Controlled In-Line Bottle-Filling Application</p><p> A second application is sho
51、wn in Fig. 1-9. In this application multiple filling heads line up with bottles as they move along a continuous line. Each of the filling heads must match up with a bottle and track the bottle while it is moving. Product
52、 is dispensed as the nozzles move with the bottles. In this application 10 nozzles are mounted on a carriage that is driven by a ball-screw mechanism. The ball-screw mechanism is also called a lead screw. When the motor
53、turns the shaft of the ball screw</p><p> The servo drive system utilizes a positioning drive controller with software that allows the position and velocity to be tracked as the conveyor line moves the bott
54、les. A master encoder tracks the bottles as they move along the conveyor line. An auger feed system is also used just prior to the point where the bottles enter the filling station. The auger causes a specific amount of
55、space to be set between each bottle as it enters the filling station. The bottles may be packed tightly as they appr</p><p> FIGURE 1-9 Application of a beverage-filling station controlled by a servomotor&l
56、t;/p><p> The servo drive system compares the position of the bottles from the master encoder to the feedback signal that indicates the position of the filling carriage that is mounted to the ball screw. The s
57、ervo drive amplifier will increase or decrease the speed of the ball-screw mechanism so that the nozzles will match the speed of the bottles exactly. </p><p> An Example of a Servo Controlled Precision Auge
58、r Filling System </p><p> A third application for a servo system is provided in Fig. 1-10. In this application a large filling tank is used to fill containers as they pass along a conveyor line. The materia
59、l that is dispensed into the containers can be a single material fill or it can be one of several materials added to a container that is dumped into a mixer for a blending operation. Since the amount of material that is
60、dispensed into the container must be accurately weighed and metered into the box, an auger that is c</p><p> FIGURE 1-10 Application of a precision auger filling station controlled by a servomotor.</p>
61、;<p> The speed of the auger can be adjusted so that it runs at high speed when the container is first being filled, and the speed can be slowed to a point where the final grams of material can be metered precise
62、ly as the container is filled to the proper point. As the price of material increases, precision filling equipment can provide savings as well as quality in the amount of product used in the recipe. </p><p>
63、 An Example of a Label Application Using Servomotors </p><p> The fourth application has a servomotor controlling the speed of a label-feed mechanism that pulls preprinted labels from a roll and applies th
64、em to packages as they move on a continuous conveyor system past the labeling mechanism. The feedback signals are provided by an encoder that indicates the location of the conveyor, tach generator that indicates the spee
65、d of the conveyor, and a sensor that indicates the registration mark on each label. The servo positioning system is controlled by a micro</p><p> FIGURE 1-11 Example of a labeling application controlled by
66、a servomotor</p><p> An Example of a Random Timing Infeed System Controlled by a Servomotor </p><p> The fifth application is presented in Fig. 1-12, and it shows a series of packaging equipme
67、nt that operates as three separate machines. The timing cycle of each station of the packaging system is independent from the others. The packaging system consists of an infeed conveyor, a positioning conveyor, and a wra
68、pping station. The infeed conveyor and the wrapping station are mechanically connected so that they run at the same speed. The position of the packages on the wrapping station must be stric</p><p> FIGURE 1
69、-12 Example of a packaging system with random timing functions controlled by a servo-motor.</p><p><b> 譯 文</b></p><p><b> 伺服電機原理及應用</b></p><p><b> 電
70、機是如何工作的?</b></p><p> 電動機是將電能轉換成機械運動,電機用在家用電器,電動風扇,遙控玩具等各種使用場合</p><p> 電機起源于早期電學上的一個發(fā)現(xiàn)- Arago轉動.在1824年, Francois Arago發(fā)現(xiàn)懸浮在銅盤上的磁針,在銅盤轉動時也跟著轉動.第二年,計算機先驅(qū)Charles Babbage和天文學家John Herschel向人們
71、展示上述運動可以相逆的:轉動一塊位于銅盤上方較強的磁鐵時,銅盤也轉動.在1831年, Michael Faraday通過試驗來解釋這一現(xiàn)象發(fā)生的原因.在電機實際運用前,半個多世紀來做這些電機些基礎研究</p><p> 過了幾十年后,許多發(fā)明家不斷改進發(fā)明將電能轉換成機械能.其中一個就是1832 Hippolyte Pixii改進了之后稱為換向器的發(fā)明.它通過改變位于兩個或更多的固定電磁石電流方向,以維持一臺電
72、機連續(xù)運轉. Thomas Davenport是第一個制造出在工業(yè)中使用的電機.并是第一個對電機申請專利的.不久電機被用作諸如交通運輸?shù)葓龊? Moritz-Hermann De Jacobi將一臺電機安裝在涅瓦河上的一條船上. Charles G. Page用電機做了一臺小型機車.伴隨著19世紀80年代商業(yè)性電力供應系統(tǒng)出現(xiàn),制造出更大的電機也變得有可能. Edison鼓勵在工業(yè)中便用電機,并且設計了幾一些為工業(yè)使用兵新型電機<
73、/p><p> 在19世紀80年代到90年代發(fā)生了一個重大變化,電力公司開始考慮轉成交流電.交流適合于長距離傳輸.并且在Edison的電燈上工作的很好,但是沒有實際的交流電機存在,直到意大利的Galileo Ferraris和美國的Nikola Tesla. 在今天人們認為Tesla的貢獻比Ferraris大部分原因是前者后來受雇于西屋公司,這家公司應用了他自己的及其他人的專利,成了為電氣設備一個主要的生產(chǎn)者.隨著
74、交流電機成為可能,交流電力的發(fā)展,交流電機一直使用到現(xiàn)在。</p><p><b> 伺服電機</b></p><p> 伺服電機包括交流電機和直流電機。早期的伺服電機通常是直流電機,因為那時只有通過可控硅才能控制大電流。由于晶體管能夠控制大電流,并在更高的頻率轉換大電流,交流電機使用越來越廣泛。早期的伺服電機是特別為伺服放大器設計的。如今電機設計則可應用于伺服放
75、大器或變頻控制器。這意味著,電機一方面可以用于伺服系統(tǒng),另一方面可以用于變頻驅(qū)動。一些公司把不使用步進電機的環(huán)閉系統(tǒng)稱為伺服系統(tǒng),因此與調(diào)速器相連接的交流異步電機也可以被稱作為伺服電機。</p><p> 伺服電機還有些地方需要改進,包括在額定轉速內(nèi)運行不過熱,電機靜止時仍能保證足夠的扭矩去承受負載在規(guī)定的位置,以及超低速長時間轉動不過熱。舊型電機冷卻風扇是直接連在接電機主軸上。當電機工作在低速時,風扇不能產(chǎn)生
76、足夠的氣流來冷卻電機。新一代的電機擁有獨立的風扇安裝在電機上,所以能提供足夠的冷卻氣流。這個風扇動力來自一個恒壓源所以可以使風扇能始終運行在最高轉速下,而不管伺服電機的轉速如何。在所有伺服電機中,最實用的是永磁電動機。永磁電機的繞組電壓可以是交流也可以是直流.這類永磁電機同以前的永磁電機類似。圖1-1顯示的是一臺普通永磁電機的剖示圖。圖1-2展示的是伺服永磁電機的剖示圖。從圖中可以看出,新的電機在軸承室,轉子,定子上同以前的電機類似。主
77、要的區(qū)別只在于這種新類型的電機可以較大的負載從靜止狀態(tài)動作。這類永磁電機同樣有一個編碼器或變壓器被放置在電機內(nèi)部。這個可以確保設備能更精確的顯示電機軸的位置或速度。</p><p> 圖1-1 典型永磁電機</p><p> 圖1-2剖視圖 永磁伺服電機</p><p><b> 無刷伺服電機</b></p><p&g
78、t; 無刷伺服電機可以無碳刷運行,這就意味著它的換向現(xiàn)在需要由電子完成而不是由機械碳刷來完成。電子換向由晶體管以某種周期方式開關來實現(xiàn)的。圖1-3顯示三條輸入到無刷伺服電機的電壓和電流波形。圖1-4顯示一臺三相繞組的無刷伺服電機,這種無刷伺服電機的主要特點是可以交流或直流電源驅(qū)動。</p><p> 圖1-3(a)輸入電壓、電流方波梯形波表(b)正弦電壓和正弦輸入電壓和方波輸出電壓波型(c)正玄輸入電壓和正弦
79、電流波形 這已經(jīng)成為最流行的無刷式伺服控制</p><p> 圖1-3展示三種電壓波形來驅(qū)動無刷伺服電機。圖1-3a展示梯形反電動勢電壓,方波電流輸入,圖1-3b顯示為一正弦波輸入電壓和一方波電流波形,圖-3c顯示一正弦波辦公設備電壓放一正弦波電流波形,正弦波電壓和正弦波電流波形是無刷伺服電機最常用的驅(qū)動。</p><p> 圖1-4(a)晶體管三相繞阻無刷伺服電機。(b)三相繞阻電機
80、使用三個獨立的電壓波形。(c)波形信號用來控制晶體管的波形序列。(d)反電勢波形。</p><p> 圖1-4展示三組晶體管,它同變頻驅(qū)動的輸出端很相似.在圖1-4a,連接到電機三相繞阻的晶體管同變頻驅(qū)動基本相同。圖1-4b晶體管輸出波形圖,它是由三組獨立的正弦波形組成。圖1-4c是輸入到每個晶體管的控制端的波形。圖1-4d顯示驅(qū)動波形的反電勢。</p><p><b> 伺
81、服電機控制器</b></p><p> 伺服電機控制器使一臺伺服電機不只是用于放大器功能。今天的伺服電機控制器既要能做一定量的判斷,也要提供一種方法能接受外部傳感器和內(nèi)部控制的信號,同時也可以在主控制器,PLCS和伺服系統(tǒng)數(shù)據(jù)交換。圖1-5展示一些伺服電機與放大器。從圖中看,這些同其它類型的電機和控制器比較相似。</p><p> 圖1-5 伺服電機與放大器</p&g
82、t;<p> 圖1-6顯示一張伺服電機控制器的圖,你可以從中看出與其它類型電機的不同之處。圖中的控制器用于直流伺服電機。輸入電源,伺服電機及轉速計連接到控制器底部的P3端口。可以看出輸入電源為115V單相交流電。一個主斷路器串聯(lián)在L1線上。由L1和N經(jīng)過的電源經(jīng)過一個隔離的降壓變壓器.變壓器的次級電壓可是介于20到85伏的之間的任意電壓。控制器通過引腳8接地.你應該記得在這點接地只是用來對系統(tǒng)的金屬部份提供短路保護。&l
83、t;/p><p> 圖1-6 伺服控制圖 (此圖顯示將數(shù)字信號和模擬信號送到控制器,再由信號控制器將信號送回給所在的主控制器或可編程控制器)</p><p> 伺服電機邊接控制器的4腳和5腳。其中5腳是+,4腳是-。3腳是對電機和控制器提供一種屏蔽接地保護。轉速計連接到引腳1和引腳2,其中腳2是+,腳1是-。屏蔽線纜同電機外殼連接.連接到這個端口的引線應該比同其它端口的引線要粗,因為他們承
84、受更大的電機電流。如果電機使用額外的散熱風扇,它也應該連接到這個端口上,在絕大部分場合,散熱風扇由一常規(guī)的110V或240V的單相或三相交流電供電。</p><p> 控制信號通過P1端口送到控制器.控制信號的引腳是1和2,其中1是+,2是-.這是一種非接地常規(guī)的信號,同電路中其它部分不共享接地,一些附加的輔助信號也連接到P1。這些信號包括約束,如可以通過外部控制器來使驅(qū)動失效。正反轉命令,如要求控制器給電機通
85、電,使電機按順時針方向或逆時針方向轉動。在某些場合,最大正轉行程極限開關和最大反轉行程開關連接到一起,以便當機器運行到極限位置時觸發(fā)另一狀態(tài)的開關。這時將自動的以反方向重新驅(qū)動。</p><p> P1端品也提供一些數(shù)字輸出信號,一通常用于送出一些故障信號或其它信息,諸如正在運轉,到主控制器或PLC.P1端口主要是數(shù)字(1-0)信號的端口。</p><p> P2端口是邏輯信口的窗口,
86、總線上的典型信號包括電機電流和電機轉速信號由伺服控制器送出,送入主機或PLC,以便做出正確邏輯判斷以確??刂破髂艹稣_信息到電機上。從主機或PLC上的輸入信號也被送到控制器上來設置驅(qū)動的最大電流和轉速。在更新的數(shù)字驅(qū)動中,這些值由編好程序的驅(qū)動參數(shù)來控制的。</p><p><b> 脈寬調(diào)制伺服放大器</b></p><p> 脈寬伺服放大器被用作小尺寸的伺服場
87、合,如使用直流有刷伺服電機。圖1-7展示這一類型放大器的圖。從左下圖中可以看到單相交流電源供電給放大器。右上圖中交流電經(jīng)整流后,被送到驅(qū)動的輸出單元,動輸出單元用四個IGBT來產(chǎn)生脈寬調(diào)制波形。IGBT連接后以便他們提供30-120V直流電壓,高達30A的電流到直流有刷伺服電機。電機的極性由圖中顯示。在這張圖的中間的保留電路顯示一些從故障邏輯板上的故障電路,在圖的下方提供一路輸出信號。可以看到故障輸出信號包括過壓,過溫及過電流。第四個信
88、號作為SSO(系統(tǒng)狀態(tài)輸出)。它顯示當故障發(fā)生時的系統(tǒng)狀態(tài)。一個跳線用來設置SSO信號。 </p><p> 在這張圖的右下角的輸入腳用來顯示驅(qū)動的的使能控制或抑止,選擇是前過放大控制還是向后放大控制。抑制信號作為控制信號。當放大器過高的時抑制輸出過程。FAC和RAC信號限制電流到放大或縮小5%。</p><p> 左上方顯示的是輸入信號。VCS(速度控制信號)要求一個+VCS和一個-
89、VCS信號來提供不同的信號。</p><p> 伺服放大器和電機的應用場合</p><p> 可以從伺服電機和放大器一些典型的應用場合延升到其它更好的使用場合。圖-8顯示的是一臺伺服電機被用作控制一個壓力切割器。在這個應用表中,薄片材料被送入一個卷壓器中,在那兒它被用一把刀刃切長一定長度。薄片材料可以是一個帶有切斷點標記的商標或是廣告紙。帶有切斷點標記的。在這個場合中,薄片材料的速度和
90、位置司切斷點保持同步。反饋傳感器可以是一個編碼器或是解碼器,它同一個光電傳感器連接在一起,用來判斷標記的位置。所提供的操作面板用來使操作者能減慢系統(tǒng)動作,以維護刀刃或是換一卷新的材料。面板上可以進行參數(shù)調(diào)整以適應每一種原料。系統(tǒng)也可以同一個可編程的控制器或其它類型的控制器連接,以便操作面板上可以用來選擇每一種材料或產(chǎn)品在運行時的正確的切斷點。</p><p> 圖1-7圖示 脈寬調(diào)制放大器直流有刷伺服電機<
91、;/p><p> 圖1-8 由伺服電機控制材料壓入的速度來確保尺寸</p><p> 灌裝流水線伺服控制應用實例</p><p> 第二個應用如圖1-9所示。在這個應用中若干個填充頭和瓶子一樣排列成一直線向前移動。每個填充頭必須與每個瓶子以及瓶子運行的軌道相配合。噴嘴跟著瓶子移動并且填充物料。這里使用把10個噴嘴安裝在機架上并通過滾珠絲杠裝置來傳動。滾珠絲桿也叫做
92、螺桿。當電機轉動絲桿軸,機架會水平地沿著絲桿軸長度移動。這個平穩(wěn)的運動能夠使每個噴嘴將物料裝入憑中,而且?guī)缀醪粫幸绯觥?lt;/p><p> 伺服驅(qū)動系統(tǒng)利用一個定位控制器驅(qū)動軟件來確定的傳送帶的位置和速度實現(xiàn)瓶子的移動。主編程軌跡是瓶子沿著傳送線向前移動。螺旋流入的方式是利用在進入灌注區(qū)域的前點。螺旋流入方式是根據(jù)每個瓶子進入灌注區(qū)域所保持的間距精確數(shù)據(jù)計算所得。瓶子都在接近螺旋灌注點被緊緊的固定,但是當瓶子通
93、過螺旋灌注點時位置間距是十分精確的,所以噴嘴和瓶子頸部有足夠的空間相配合。傳感器聯(lián)合檢測系統(tǒng)確保在瓶子錯位,或者瓶子與瓶子之間出現(xiàn)過大距離時,噴嘴不會再噴出物料。</p><p> 伺服驅(qū)動系統(tǒng)對來自主編程器的瓶子位置與顯示了安裝在螺旋絲桿上的填充機架位置的反饋信號進行比較。伺服驅(qū)動放大器會增加或減少滾珠絲杠裝置的速度,使噴嘴與瓶子的速度準確的匹配。</p><p> 圖1-9 應用伺
94、服電機控制的飲料灌裝機</p><p> 精確螺旋伺服控制系統(tǒng)應用實例</p><p> 伺服系統(tǒng)第三方面的應用如圖1-10所示。這個應用中使用一個巨大的供應槽來給沿著轉送帶運動的容器填料。材料被灌入到容器內(nèi),可以僅僅放入一種材料也可以是將某一種材料傾倒在攪拌器進行混合攪拌操作后再灌入到容器中。因此,所有灌入到容器內(nèi)的材料必須被準確的稱量過才能裝入。伺服系統(tǒng)通過一個絲桿進行控制。反饋傳
95、感器在這個系統(tǒng)中是一個稱量系統(tǒng),例如測壓元件在前面的章節(jié)已經(jīng)討論過。命令信號來自一個可編程控制器或者工作人員可以選擇手動控制,在操作終端上進行控制。命令信號來自一個可編程控制器或者工作人員可以從操作終端上手動選擇一個配方。材料的數(shù)量多少是根據(jù)不同的配方?jīng)Q定。</p><p> 圖1-10 實施精確數(shù)字螺旋伺服控制的灌注機</p><p> 螺旋桿的速度是可以調(diào)整的,當容器剛開始灌注時,
96、螺旋桿是高速運轉的,當達到經(jīng)過準確計量出容器在最后罐滿前適當?shù)目潭葧r,螺旋桿以額定的低速運轉。由于材料價格的增長,精密的灌注設備在使用規(guī)定的配方下在相同產(chǎn)品數(shù)量下即可以提高節(jié)約材料又能保證質(zhì)量。</p><p> 利用伺服電機打印標簽應用實例</p><p> 第四個應用是由伺服電機控制標簽打印機的預印標簽牽引滾筒的速度,當盒子穿過標簽打印機構時把標簽印在隨著連續(xù)傳送帶系統(tǒng)移動的盒子上
97、。反饋信號由三個裝置共同提供,一個能指示傳送帶位置的 編碼器,一個能指示傳送帶速度的技術發(fā)生器,還有個能顯示每個標簽的注冊記號的傳感器。由一個微型處理器來控制伺服位置系統(tǒng)設定誤差信號, 并由伺服放大器提供功率信號給伺服電機。如圖1-11所示。</p><p> 圖1-11 由伺服電機控制標簽打印機的應用</p><p> 伺服電機控制隨機定時橫切系統(tǒng)應用實例</p>&l
98、t;p> 第5中運用在11-94中出現(xiàn)。同時,那頁還展示了一個系列的組件設備。這個設備可以分為3個獨立的機器使用。每個組件系統(tǒng)所在的站點的定時循環(huán)周期是與外界相獨立的。組件系統(tǒng)由infeed傳送帶,一個定位傳送帶和一個纏繞站點。infeed傳送帶和纏繞站點是相互機械連接的,所以它們等速運轉。纏繞站點上的組件的位置是被嚴格控制的,這使得各組件不至于相互過于緊密。一塊被稱為 飛行的金屬 與纏繞站點傳送帶在某個特定接點連接以保證每個組
99、件各就各位。一個傳感器被安裝在定位傳送帶的開始端使得能在組件開始移向定位傳送帶時確定組件的前邊界。另一個傳感器被安裝在了組件傳送帶的底部以觀察金屬的 運行。 所以這些從傳感器發(fā)出的信號都被發(fā)送到辭賦電機以提供信息數(shù)據(jù),所以辭賦器可以調(diào)節(jié)定位傳送帶的速度。這樣可以使每個組件當它移向組件傳送帶時都能和某個 運行 器排列成一條直線。這種運用說明了辭賦定位控制器可以應對從2個以上傳感器發(fā)出的各種不同的信號,原因是它使用了微處理器 。</p
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--伺服電機原理及應用.doc
- 外文翻譯--伺服電機原理及應用.doc
- 機械專業(yè)外文翻譯----伺服電機原理及應用
- 機械畢業(yè)設計英文外文翻譯469伺服電機原理及應用
- 機械畢業(yè)設計英文外文翻譯469伺服電機原理及應用
- 機械畢業(yè)設計英文外文翻譯469伺服電機原理及應用.doc
- 伺服電機的原理和應用
- 步進電機和伺服電機的系統(tǒng)控制外文翻譯
- 伺服電機工作原理
- 伺服電機及其控制原理
- 外文翻譯--步進電機和伺服電機的系統(tǒng)控制
- 外文翻譯--步進電機的工作原理
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯---步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
- 外文翻譯。步進電機和伺服電機的系統(tǒng)控制.doc
評論
0/150
提交評論