版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文3000字</b></p><p><b> 文獻(xiàn)翻譯原文</b></p><p> LOAD PERFORMANCE OF PMLSM IN LOWER SPEED</p><p> REGION FED BY SINUOIDAL PWM INVERTER</p>&
2、lt;p> Si Jikai1,2 Chen Hao1 Wang Xudong2 Yuan Shiying2 Shangguan Xuanfeng2</p><p> ?。?. China University of Mining and Technology Xuzhou 221008 China</p><p> 2. Henan Polytechnic University
3、 Jiaozuo 454000 China)</p><p><b> ABSTRACT</b></p><p> For the permanent magnet linear synchronous motor (PMLSM) fed by sinusoidal PWM voltage source inverter in the lower speed co
4、ndition without feedback control, load performance isdifferent from the PMLSM working in high speed region. The paper adopts time-step finite elementmethod and field circuit coupling method to investigate load performanc
5、e of the PMLSM to drive horizontal transportation system with light load and heavy load condition respectively. It is shown that load performance of the PM</p><p> Keywords: Permanent magnet linear synchron
6、ous motor (PMLSM), load performances, sinusoidal,PWM (SPWM) inverter, time-step finite element method, field circuit coupling method</p><p> 1 Introduction</p><p> The permanent magnet linear
7、synchronous motor(PMLSM) has been widely used in many applications from transportation system to office automation and military devices because the motors have lots of merits as high efficient, high accuracy position con
8、trol, etc[1-4]. However, it is necessary that load performance of lower speed of PMLSM is profoundly researched, which has lots of characteristics to different from rotating synchronous machine and PMLSM in the high spee
9、d region. PMLSM in lower speed r</p><p> motor operation frequency was 6Hz, the pole pitch was 30mm. In the literature FEA method for electric machines driven by PWM inverter was proposed and the value of t
10、ime-step was changed according to the</p><p> switching logic of PWM inverter. In the Ref.[6], the authors presented the dynamic characteristics of partially excited permanent magnet linear synchronous moto
11、r considering end-effect. The starting and control characteristics related to the capability in PMLSM driving were investigated. The specifications of the motor were as follow. The resistance was 7.6Ω of sample A, the in
12、ductance was 17.6mH, the maximum speed was 2m/s. As the Ref.[7]shown, the simulation condition was 7V, 3Hz and load thru</p><p> 2 Analysis model</p><p> The primary is composed of three-phase
13、 windings and core opened slot, and the secondary consists in permanent magnets and the separated magnetism piece which placed on the surface of the iron yoke. Single side type short primary and surface mounted PMLSM are
14、 shown in Fig.1, in which permanent magnet magnetization is unanimous to air gap flux axis, leakage flux in poles interval lower and craftwork simple. The specifications of PMLSM are shown in Table.</p><p>
15、 Table PMLSM specifications</p><p> Fig.1 Physical model of surface permanent magnet linear synchronous motor</p><p> The primary 2—Tooth 3—Slot 4—Material of insulating magnet 5—Permanent mag
16、net 6—The secondary yoke</p><p> To take circuit fed by SPWM voltage source inverter and the motor end effects into account, the paper adopts field-circuit coupling method to calculate electromagnetic trans
17、ient process, solve equation variables of magnetic vector potential and the motor phase current, which are combination of electromagnetic field time-step finite element Equ. and threephase windings circuit equations. by
18、electromotive force in the armature windings. Transient field governing equations. in which Az denotes magn</p><p> where Az——z-axis component of magnetic vector potential</p><p> Js——Current
19、density of the primary windings</p><p> Jm——Equivalent magnetizing surface current density of permanent magnet</p><p> μ——The permeability</p><p> In the paper, the 2-D model is
20、subdivided into small triangle elements to form a mesh that covers the entire region adopting n-order unit basic function and linear interpolation. After applying the Galerkin method, thegoverning equations. for the anal
21、ysis model is expressed as</p><p> where A——Unknown magnetic vector potential (A is used in Eq.(1) with different meaning)</p><p> I——Current in the windings</p><p> S,C,T—— Coef
22、ficient respectively</p><p> G—— Corresponding matrix of equivalent magnetization current density</p><p> Equivalent magnetizing surface current method is adopted to deal with NdFeB type perma
23、nent magnet, which is uniformity magnetization, regulation shape, and linear demagnetization. Intensity of magnetization sign is M0.</p><p> PMLSM resistance and leakage reactance is not neglected due to th
24、e motor with large air gap characteristic. According to Ohm law and Faraday electromagnetic induction law, relation of electromotive force and voltage produced the primary three-phase windings is shown in Eq.(4).</p&g
25、t;<p> where ψ ——The windings flux linkage</p><p> Ll——The motor leakage inductance</p><p> R——Windings resistance</p><p> U——Windings phase voltage</p><p>
26、 where N——Winding effective turns</p><p> B——Flux density</p><p> S1——Winding effective area in the slot</p><p> S2——Coupled effective area of the primary and the secondary</p
27、><p> To PMLSM magnetic circuit and electric circuit are unbalance, thus electric potential of the connector of star point is not equal to zero and the motor phase equations. should be changed as follows.</
28、p><p> Where U0——Output voltage of the inverter</p><p> g0——The inverter switch on-off function</p><p> Ud——Direct voltage of bus link</p><p> Maxwell’s stress tensor
29、is adopted to calculate PMLSM electromagnetic force, which includes all kinds of harmonics component electromagnetic force. The motor electromagnetic force tangential component is shown in Eq.(9).</p><p> T
30、he motor electromagnetic force normal component is shown in Eq.(10).</p><p> where L1——Winding effective length</p><p> L2——Integral space</p><p> Bx——x-axis flux density compone
31、nt in the air gap field</p><p> By——y-axis flux density component in the air gap field</p><p> FT ——Electromagnetic thrust force</p><p> FN ——Normal electromagnetic force</p&g
32、t;<p> Movement equation of PMLSM is shown in Eq.(11).</p><p> where m——Mass</p><p> v——The motor mover velocity</p><p> FL——Load force</p><p> 4 Simulation
33、 results</p><p> The simulation conditions are as follows. Line voltage is 30V, module frequency is 2Hz, light load is </p><p> 50N and high load is 130N, the motor rated synchronous speed is
34、0.156m/s, which are identical to experimental PMLSM parameters. The simulation results are attained from cosimulation of finite element function of magnetic field and space state function of outer circuit. The motor volt
35、age results are neglected because the voltage inverter is not almost affected by the outer conditions. Fig.2 shows simulation results of three phase current in load 50N condition. Fig.3 displays simulation result of <
36、/p><p> in load 130N condition. From Fig.2 and Fig.5, it is shown that the three-phase currents of the PMLSM in load 50N</p><p> condition are larger than those of in load 130N condition, accordi
37、ng to every load condition the motor phase current is unbalance that a phase current value is almost close to b phase current, but both is larger than c phase current value because the PMLSM magnetic circuit is open and
38、armature windings are discontinuous. In terms of comparison with Fig.3 and Fig.6, we can know that the tendency of the thrust force of the PMLSM in load 130N condition is favorable. As shown in Fig.4 and Fig.7, in </p
39、><p> well and there is little undulation. If the detent force produced armature core length of PMLSM is reduced, the mover speed is basically close to the synchronous speed, but it is impossible that it is ab
40、solutely same as synchronous speed because there are lots of harmonic components in current fed from SPWM voltage</p><p> Fig.2 Three-phase current in load 50N condition</p><p> Fig.3 Thrust f
41、orce in load 50N condition</p><p> Fig.4 Speed with and without reducing detent force in load 50N condition</p><p> inverter and air gap field is unsinuso- idal even if driven system is with f
42、eedback control.</p><p> Fig.5 Three-phase current in load 130N condition</p><p> Fig.6 Thrust force in load 130N condition</p><p> Fig.7 Speed in load 130N condition</p>
43、<p> 5 Experimental results</p><p> Experimental inverter type is FR-A241E-55K inverter of Mitsubishi corp. Voltage and current hall sensors are used to detect signs. The mover speed is attained by th
44、e rotating encoder for E6B2 type, whose rotating speed can be converted into the motor line speed. Software of the data collection system is edited through Turbo C language.</p><p> Fig.8 and Fig.11 show th
45、ree-phase current in load 50N and 130N condition, respectively. Thrust force of the motor in two loads condition is shown in Fig.9 and Fig.12. From Fig.10 and Fig.13, it is shown that there are two speed curves in load 5
46、0N and 130N condition. By comparisons of simulation and experiment results, we can see that both are highly compatible.</p><p> Fig.8 Three-phase current in load 50N condition</p><p> Fig.9 Th
47、rust force in load 50N condition</p><p> Fig.10 Speed in load 50N condition</p><p> Fig.11 Three-phase current in load 130N condition</p><p> Fig.12 Thrust force in load 130N con
48、dition</p><p> Fig.13 Speed in load 130N condition</p><p> 6 Conclusions</p><p> In the paper, field-circuit coupling method of the time-step finite element method and outer elec
49、tric power circuit is utilized to analyze special load performances of lower speed of PMLSM with large ratio of the resistance to the inductance, large air gap and three-phase unbalance. Analysis results show that load p
50、erformances of the PMLSM in the heavy load condition are highly better than light load operation conditions, and operation current becomes lower with load increasing because of the la</p><p> Refrerence<
51、/p><p> [1] Wang Xudong, Yuan Shiying, Jiao Liucheng, et al. 3-D analysis of electromagnetic field and performance in a permanent magnet linear synchronous motor[C]. IEEE International Electric Machines and Dr
52、ives Conference, Cambridge, MA USA, 2001: 935-938.</p><p> [2] Bianchi N. Analytical computation of magnetic fields and thrusts in a tubular PM linear servo</p><p> motor[C]. Conference Record
53、-IAS Annual Meeting (IEEE Industry Applications Society), Rome, Italy, 2000, 1: 21-28.</p><p> [3] Bon Gwan Gu, Kwanghee Nam. A vector control scheme for a PM linear synchronous motor in extended region[J].
54、 IEEE Transactions on Industry Applications, 2003, 39(5): 1280-1286.</p><p> [4] Gore V C, Cruise R J, Landy C F. Considerations for an integrated transport system using linear synchronous motors for ultra-
55、deep level mining[C]. IEMD 99, Seattle, Washington, USA, 1999: 568-570.</p><p> [5] Jung In Soung, Hyun Dong Seok. Dynamic characteristics of PM linear synchronous motor driven by PWM inverter by finite ele
56、ment analysis[J]. IEEE Transactions on Magnetics, 1999, 35(5): 3697-3699.</p><p> [6] Sang Yong Jung, Hyun Kyo Jung, Jang Sung Chun, et al. Dynamic characteristics of partially excited permanent magnet line
57、ar synchronous motor considering end-effect[C]. IEEE International Electric Machines and Drives Conference, Boston, USA, 2001: 508-515.</p><p> [7] Kwon Byung Il, Woo Kyung Il, Kim Duck Jin,et al. Finite el
58、ement analysis for dynamic characteristics of an inverter-fed PMLSM by a new moving mesh technique[J]. IEEE Transactions on Magnetics, 2000,36(4): 1574-1577.</p><p> [8] Shangguan Xuanfeng, Li Qingfu, Yuan
59、Shiying.Analysis on characteristics of permanent magnet linear synchronousmachines with large armature resistance and small reactance [C]. The Eighth International Conference on Electrical Machines and Systems, Nanjing,
60、China, 2005, 1: 434-438.</p><p> [9] Tounzi A, Henneron T, LeMenach Y, et al. 3-D approaches to determine the end winding inductances of a permanent-magnet linear synchronous motor[J]. IEEE Transactions on
61、Magnetics, 2004, 40(2): 758-761.</p><p> [10] Yamaguchi T, Kawase Y, Yoshida M, et al. 3-D finite element analysis of a linear induction motor[J]. IEEE Transactions on Magnetics, 2001, 37(5): 3668-3671.<
62、/p><p> [11] In Soung Jung, Sang Baeck Yoon, Jang Ho Shim, et al. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motor[J]. IEEE Transactions on Energy
63、 Conversion, 1999, 14(4): 1265-1270.</p><p><b> 文獻(xiàn)翻譯譯文</b></p><p> 正弦PWM電壓源逆變器供電的永磁直線同步電機低速負(fù)載性能</p><p><b> 摘 要</b></p><p> 對于開環(huán)低速區(qū)由正弦PWM電壓源
64、逆變器供電的永磁直線同步電機(PMLSM)而言,與工作在高速情況的PMLSM 負(fù)載性能不同,本文采用場路耦合時步有限元的方法研究PMLSM驅(qū)動水平運輸系統(tǒng)的兩種負(fù)載工況:輕載與重載。結(jié)果顯示,PMLSM 工作在重載情況下的負(fù)載性能較輕載優(yōu),且電機的工作電流隨著負(fù)載的增大而減小。仿真與實驗結(jié)果驗證了該方法的有效性及正確性。</p><p> 關(guān)鍵詞:永磁直線同步電機,負(fù)載性能,正弦PWM,電壓源逆變器,時步有限元
65、法,場路耦合</p><p><b> 1 引言</b></p><p> 永磁直線同步電機(PMLSM)已廣泛應(yīng)用于多種領(lǐng)域,因為該電機具有高效性、高精度的控制性等特點,從自動化的運輸操作系統(tǒng)到復(fù)雜精細(xì)的軍事設(shè)備都會運用到它。</p><p> 然而,對于在較低速情況下的PMLSM的負(fù)載性能的研究是非常必要的,并且同步旋轉(zhuǎn)電機和PML
66、SM在高速情況下也有很多不同的特征。PMLSM在低速情況下因為有多而有效的氣壓和低頻率,電機具有抗電感能力強的基本特性。很多PMLSM具有這些特性,因為適用于PMLSM的轉(zhuǎn)速和頻率是有限的。通過文獻(xiàn)【5】可以得出,適用于PMLSM的規(guī)格是一樣的。電機的運轉(zhuǎn)頻率是6HZ,磁極距必須是30毫米。時步有限元分析法的研究為正弦PWM電壓源逆變器供電的電機驅(qū)動作了依據(jù),并且由于PWM電壓源逆變器,人們對于時間步長的價值觀也改變了。在文獻(xiàn)【6】中,
67、作者在邊緣效應(yīng)的基礎(chǔ)上描述了激勵永磁同步電機的部分動態(tài)性能。對于PMLSM驅(qū)動的啟動和控制的相關(guān)方面已經(jīng)有所研究。電機規(guī)格也是一樣的。電阻是7.6Ω,電感是17.6mH,最大轉(zhuǎn)速是2m/s。根據(jù)文獻(xiàn)【7】顯示可知,模擬電壓是7V,頻率是3Hz,負(fù)載驅(qū)動力是20N。電壓源逆變器供電的PMLSM的動態(tài)特性的滯后性,是考慮了在合成鋁板和固體回收鐵中的渦電流,并通過分析時步有限元法和無線網(wǎng)絡(luò)技術(shù)得出的。在文獻(xiàn)【3】中,適于PMLSM的規(guī)格如下。
68、電阻是5.2Ω,</p><p> 電感是2.8mH,電機驅(qū)動的轉(zhuǎn)速是0.9m/s。文獻(xiàn)【8】已經(jīng)呈現(xiàn)出PMLSM基于正弦交流電流源,如大電感和電阻率,的穩(wěn)態(tài)性能。但是,對于在低頻率下的有大的電阻率和電感、半導(dǎo)體的SPWM逆變器操作,動態(tài)性能指標(biāo)的研究在上述文獻(xiàn)中比較缺乏。因此,研究電機在不同負(fù)載下的動態(tài)性能是極其重要的。</p><p> 最近,通過精確的磁場分析,已經(jīng)研究提出了電機
69、的動態(tài)性能。其中的一種數(shù)學(xué)方法是基于有限元法的方法,它被越來越多的應(yīng)用于精確探討不對稱磁場的動態(tài)性能。至于PMLSM,它有三相不平衡繞組、開放磁路、電阻率、電感系數(shù)、相位、諧波和電機電流。采用解析法和傳統(tǒng)的有限元法客觀地研究一個或兩個極點的周期邊界條件,是很困難的,另外考慮到連接外部SPWM變頻器和磁場的問題,因此,本文就采用有限元分析法研究電機在不同負(fù)載的情況下,其暫態(tài)過程的性能,如:推力、移動速度和繞組電流。由于PMLSM靠SPWM
70、電壓源逆變器供電,電機的電流是不知道的,并且電機的電壓還包括許多諧波分量,這就使有限元分析法不是很理想了。因此采用研究負(fù)荷性能時步有限元法和場耦合法就可以很好的研究該系統(tǒng)。</p><p> 這篇文章提出了使用時步有限元法和場耦合法研究電機在不同負(fù)荷情況下的性能。以下將會系統(tǒng)的講解,在第二部分中,將對永磁交流同步直線電機進(jìn)行描述。有限元模型在第三節(jié)中講解。在論文第四部分將會研究PMLSM在不同負(fù)載下的性能并進(jìn)行
71、仿真和總結(jié)。在第五和第六部分,就總結(jié)實驗結(jié)果并總結(jié)結(jié)論。</p><p><b> 2 物理分析模型</b></p><p> 這個模型主要是由三相繞組和核心擴展插槽組成,其次是由永久性磁鐵和在鐵軛表面上分離出來的磁性組成。PMLSM的規(guī)格如下表1所示。其中含永磁磁鐵磁化的漏磁量等。PMLSM的性能規(guī)格就在下面的表格中。</p><p>
72、<b> PMLSM 規(guī)格表</b></p><p> 型材 項目 材料和單位 </p><p> 相位 3</p><p> 匝數(shù) 90</p><p> 主要
73、電樞材料 鐵</p><p> 磁極距 39mm</p><p> 槽距 13mm </p><p> 主存材料 永久性磁鐵</p><p> 寬度 27mm&l
74、t;/p><p> 其次 高度 7mm</p><p> 長度 120mm</p><p> 鑲嵌 表面型 </p><p> 空隙
75、 5mm </p><p> 圖1 物理模型的方法建立的永磁直線型同步電機</p><p> 主要部分 2—齒輪 3—開槽 4—絕緣磁鐵材料 5—永磁鐵 6—鐵軛</p><p> 3 PMLSM勵磁電路的數(shù)學(xué)模型</p><p> 把SPWM電壓源逆變器
76、,電機邊緣效應(yīng)影響因素考慮進(jìn)去,采用勵磁電路方法計算電磁的暫態(tài)方程,解決向量電磁場的變化過程及電機的穩(wěn)態(tài)方程,由勵磁電路相結(jié)合的電磁場時步有限元方程,并說明在電樞繞組中的繞組電路電動勢方程。</p><p> 瞬變場的控制方程,電磁場是可變的,其依據(jù)是麥克斯韋方程式。如方程式(1)可示:</p><p> 式中,Az——向量電磁場中z軸方向的分量</p><p>
77、;<b> Js——電流密度</b></p><p><b> Jm——磁化密度</b></p><p><b> μ——磁導(dǎo)率</b></p><p> 在摘要中,2-d模型可以被分為三角元素構(gòu)成網(wǎng)孔。在運用伽遼金法后,運動方程的分析模型為:</p><p> 式中
78、,A——未知的潛在向量電磁場</p><p><b> I——繞組電流</b></p><p><b> S,C,T——系數(shù)</b></p><p> G——等效的矩陣磁化電流密度</p><p> 在外磁場作用下,磁介質(zhì)磁化后出現(xiàn)的磁化電流要產(chǎn)生附加磁場。等效磁化法被用來處理永磁型場。磁化
79、強度的符號是M0.</p><p> 由于電機較大的空隙特點,PMLSM的電阻和漏磁電抗沒有被忽視。根據(jù)歐姆定律和法拉第電磁感應(yīng)定律,關(guān)于電動勢和電壓的產(chǎn)生的三相繞組式如方程【4】:</p><p> 其中 ψ——感應(yīng)電動勢</p><p><b> Ll——自感系數(shù)</b></p><p><b>
80、 R——線圈電阻</b></p><p><b> U——線圈電壓</b></p><p> 其中 N——有效的線圈匝數(shù)</p><p><b> B——磁通密度</b></p><p><b> S1——有效面積</b></p><
81、;p><b> S2——有效面積</b></p><p> 適用于PMLSM的磁路和電路是不平衡的,從而固定連接器的電勢不等于零域上的電勢。因此電機的相位方程修改如下:</p><p> 其中 U0——逆變器的輸出電壓</p><p> g0——逆變器開關(guān)功能</p><p><b> Ud—
82、—直流電壓</b></p><p> 采用麥克斯韋法計算PMLSM的電磁力,其中包含了所有種類的諧波成分。電機電磁力的正弦分量計算載于公式(9)。</p><p> 電機電磁力的垂直分量計算載于公式(10)。</p><p> 其中 L1——繞組的有效長度</p><p><b> L2——積分長度</b
83、></p><p> Bx——x軸方向的磁通密度</p><p> By——y軸方向的磁通密度</p><p> FT——正弦方向上的電磁力</p><p> FN——垂直方向上的電磁力</p><p> PMLSM的運動方程如下:</p><p><b> 其中
84、m——質(zhì)量</b></p><p><b> v——速度</b></p><p><b> FL——負(fù)荷重力</b></p><p><b> 仿真結(jié)果</b></p><p> 仿真結(jié)果圖形如下。恒定電壓是30V,模塊頻率是2Hz,輕負(fù)載是50N,重負(fù)載是
85、130N,電機額定同步速度是0.156m/s,這與PMLSM實驗?zāi)P偷膮?shù)是保持一致的。從仿真結(jié)果我們可以得到,空間磁場的功能元素及外部電路的狀態(tài)作用。由于靠電壓逆變器提供電壓,外部條件可以忽略不計。圖2是在50N負(fù)載下的三相電流的仿真圖形。圖3是驅(qū)動力。圖4是在50N負(fù)載下的速度。圖5—圖7是在130N負(fù)載下的仿真圖形。</p><p> 從圖2和圖5,我們可以看出在50N負(fù)載下的三相電流比在130N負(fù)載情況
86、下的要大。因為PMLSM的磁路電樞繞組是開放的,不連續(xù)的。比較圖3和圖7,我們可以看出PMLSM在130N負(fù)載下的驅(qū)動力更大。在圖4和圖7中可以看出,在130N負(fù)載的情況下,電機的性能更好,更穩(wěn)定。如果產(chǎn)生的適用于PMLSM的磁阻力減少,移動速度基本上是接近同步速度的,因為有許多諧波,速度要完全相同是不可能的。</p><p> (a階段,b階段,c階段)</p><p> 圖2 在
87、50N負(fù)載下的三相電流</p><p> 圖3 在50N負(fù)載下的驅(qū)動力</p><p> 圖4 在50N負(fù)載下不減少磁阻力時的速度</p><p> 圖5 在130N負(fù)載下的三相電流</p><p> 圖6 在130N負(fù)載下的驅(qū)動力</p><p> 圖7 在130N負(fù)載下的速度</p>
88、<p><b> 實驗結(jié)果</b></p><p> 電壓和電流是通過傳感器來檢測的。速度是通過E6B2型號的旋轉(zhuǎn)編碼器測得的,這個轉(zhuǎn)速可以轉(zhuǎn)化為電機的直線速度。數(shù)據(jù)采集系統(tǒng)可以通過Turbo C來編輯。圖8和圖11分別是在50N和130N情況下的三相電流。圖9和圖12是分別在兩種負(fù)載下的驅(qū)動力。圖10和圖13是在這兩種負(fù)載下的速度。通過仿真和實驗結(jié)果,我們可以看出,這兩種
89、情況都是可以的。</p><p> 圖8 在50N負(fù)載下的三相電流</p><p> 圖9 在50N負(fù)載下的驅(qū)動力</p><p> 圖10 在50N負(fù)載下的速度</p><p> 圖11 在130N負(fù)載下的三相電流</p><p> 圖12 在130N負(fù)載下的驅(qū)動力</p><
90、p> 圖13 在130N負(fù)載下的速度</p><p><b> 總結(jié)</b></p><p> 在上述內(nèi)容中,勵磁電路耦合法中的時步有限元法和外部電路被用來分析專門適用于永磁交流同步電機在大阻力、大電感、大氣隙和三相不平衡的低速度的情況下的負(fù)載性能。</p><p> 分析結(jié)果表面,PMLSM在重載情況下的負(fù)載性能比輕載時好,并
91、且電機的工作電流隨著負(fù)載的增大而減小。由于止動裝置的存在,PMLSM產(chǎn)生磁阻力的波動,同步轉(zhuǎn)速范圍的移動速度。如果引起的適用于PMLSM的開環(huán)控制的磁阻力降低,轉(zhuǎn)動速度將相當(dāng)接近于同步速度。</p><p><b> 參考文獻(xiàn)</b></p><p> [1] Wang Xudong, Yuan Shiying, Jiao Liucheng, et al.3-D
92、analysis of electromagnetic field and performance in a permanent magnet linear synchronous motor[C]. IEEE International Electric Machines and Drives Conference, Cambridge, MA USA, 2001: 935-938.</p><p> [2]
93、 Bianchi N. Analytical computation of magnetic fields and thrusts in a tubular PM linear servo </p><p> motor[C]. Conference Record-IAS Annual Meeting (IEEE Industry Applications Society), Rome, Italy, <
94、/p><p> 2000, 1: 21-28.</p><p> [3] Bon Gwan Gu, Kwanghee Nam. A vector control scheme for a PM linear synchronous motor in extended region[J]. IEEE Transactions on Industry Applications, 2003, 3
95、9(5): 1280-1286.</p><p> [4] Gore V C, Cruise R J, Landy C F. Considerations for an integrated transport system using linear synchronous motors for ultra-deep level mining[C]. IEMD 99, Seattle, Washington,
96、USA, 1999: 568-570.</p><p> [5] Jung In Soung, Hyun Dong Seok. Dynamic characteristics of PM linear synchronous motor driven by PWM inverter by finite element analysis[J]. IEEE Transactions on Magnetics, 19
97、99, 35(5): 3697-3699.</p><p> [6] Sang Yong Jung, Hyun Kyo Jung, Jang Sung Chun, et al. Dynamic characteristics of partially excited permanent magnet linear synchronous motor considering end-effect[C]. IEEE
98、 International Electric Machines and Drives Conference, Boston, USA, 2001: 508-515.</p><p> [7] Kwon Byung Il, Woo Kyung Il, Kim Duck Jin,et al. Finite element analysis for dynamic characteristics of an inv
99、erter-fed PMLSM by a new moving mesh technique[J]. IEEE Transactions on Magnetics, 2000, 36(4): 1574-1577.</p><p> [8] Shangguan Xuanfeng, Li Qingfu, Yuan Shiying. Analysis on characteristics of permanent m
100、agnet linear synchronous machines with large armature resistance and small reactance [C]. The Eighth International Conference on Electrical Machines and Systems, Nanjing, China, 2005, 1: 434-438.</p><p> [9
101、] Tounzi A, Henneron T, LeMenach Y, et al. 3-D approaches to determine the end winding inductances of a permanent-magnet linear synchronous motor[J]. IEEE Transactions on Magnetics, 2004, 40(2): 758-761.</p><p
102、> [10] Yamaguchi T, Kawase Y, Yoshida M, et al. 3-D finite element analysis of a linear induction motor[J]. IEEE Transactions on Magnetics, 2001, 37(5): 3668-3671.</p><p> [11] In Soung Jung, Sang Baeck
103、 Yoon, Jang Ho Shim, et al. Analysis of forces in a short primary type and a short secondary type permanent magnet linear synchronous motor[J]. IEEE Transactions on Energy Conversion, 1999, 14(4): 1265-1270.</p>&
104、lt;p><b> 外文原文資料信息</b></p><p> [1] 外文原文作者:Si Jikai Chen Hao Wang Xudong Yuan Shiying Shangguan Xuanfeng</p><p> [2] 外文原文所在書名或論文題目:LOAD PERFORMANCE OF PMLSM IN LOWER SPEEDREGION
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 低速永磁直線同步電機動態(tài)特性研究.pdf
- 交流永磁同步電機低速性能研究.pdf
- 五橋臂電壓源逆變器兩永磁同步電機控制系統(tǒng)的研究.pdf
- 正弦波永磁同步電機的高性能控制.pdf
- 永磁直線同步電機動態(tài)性能研究.pdf
- 永磁同步電機伺服系統(tǒng)低速性能研究.pdf
- 永磁同步電機伺服系統(tǒng)低速性能研究(1)
- 低速永磁同步電機的電磁分析.pdf
- 永磁同步電機低速控制研究.pdf
- 基于改進(jìn)蟻群算法的低速永磁直線同步電機優(yōu)化設(shè)計.pdf
- 低速永磁直線同步電機電磁場分析及仿真.pdf
- 永磁同步電機低速檢測與控制.pdf
- 永磁直線同步電機控制策略的研究.pdf
- 基于電壓反饋的永磁同步電機動態(tài)性能優(yōu)化.pdf
- 永磁直線同步電機設(shè)計研究.pdf
- 永磁直線同步電機控制技術(shù)的研究.pdf
- 無鐵心永磁直線同步電機的研究.pdf
- 永磁同步電機
- 永磁直線同步電機的推力波動抑制研究.pdf
- 高精度永磁直線同步電機的控制研究.pdf
評論
0/150
提交評論