版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 外文翻譯</b></p><p> New Technique of Blast Furnace Pre-Launch Research </p><p> V. I. Bolshakov, V. V. Lebed', A. A. Zherebetskiy Z.I. Nekrasov Iron & Steel Ins
2、titute of National Academy of Sciences of Ukraine 1 Academician Starodubov Square, Dnipropetrovsk 49050, Ukraine </p><p> The methods of pre-launch experimentations of charge mechanical trajectory in shaft
3、topspace and its emplacement on the stock surface during the loading by bell-less top chargingsystem are examined. The methodical bases of pre-launch experimenting with the usage of laser rangefinder are presented.
4、 </p><p> Keywords: BLAST FURNACE, PRE-LAUNCH RESEARCH, CHARGE MECHANICAL TRAJECTORY, MATERIAL CRESTS EMPLACEMENT ON THE STOCK SURFACE </p><p> Introduction </p><p> The improvem
5、ent of charging materials distribution on the shaft top is important for growth of blast furnace operation efficiency [1, 2]. In present time blast-furnace operator have accumulated a large experience and many methods of
6、 loading with the help of bell-type feeding mechanisms, however the possibilities of charge distribution control during the furnace loading with the help of bell-type distributors are rather limited [1]. During the charg
7、e loading from the bell the trajectory of the ch</p><p> The knowledge of material flow peculiarities in the shaft top space is required for effective realization of technological capabilities of bell-less
8、top charging system for charge distribution control. The technique of calculation of charge movement from the chute distributor [4] developed in Iron & Steel Institute allows defining charge materials mechanical traj
9、ectory and choosing chute slope working angles. However, the complication of accurate values in defining of some initial calculation da</p><p> significant experience of pre-launch experimentation and resul
10、ts of their processing. It allowed increasing essentially the estimates reliability of charge flow mechanical trajectory and he effectiveness of choosing the reasonable working angles of chute slope. </p><p&g
11、t; In the world practice the active tendency development of equipping the blast furnaces of different capacity with bell-less top charging systems required different constructive solutions. It increased essentially the
12、urgency of thorough pre-launch experimentation and required the improvement of methods and instruments for their accomplishing. </p><p> Many years' experience of implementation of new and modernized b
13、last furnace technologies and equipment with the usage of justified estimation of reasonable loading programs based on pre-launch research results confirmed the essential acceleration of furnaces withdrawal of project ra
14、tes [1, 2]. The research was aimed on the generalization of existing methods of pre-launch investigations, development and testing of new technique using modern measuring tools. </p><p> Results and Discuss
15、ion </p><p> The technique of estimating the trajectories of the charge materials flow in furnaces with bell type feeding mechanism consisted in defining of the location range of cross points of charge flow
16、 with shaft top protection. The first pre-launch experiments on blast furnaces with bell-less top Science of Machines Metallurgical and Mining Industry, 2011, Vol. 3, No. 3 charging system (BF-6, Novolipetsk Steel; BF-9
17、, JSC “Kryvorizhstal”) in the USSR done by the scientists of Iron & Steel Institute in </p><p> The research workers of Iron & Steel Institute constructed a special installation for charge materials
18、 distribution on the blast furnaces of large capacity equipped with chute bell-less top charging system. It enabled to register the width of charge flow during its moving within the shaft top space and also to select the
19、 materials into the cells for their further weighting, screening and analysis of weight distribution and particle granulometry. After the installation of the "P.Wuerthe Company" </p><p> The secon
20、d similar investigation was carried out at JSC “Severstal” on BF-5 with the capacity 5580 m3 in 1986. According to results, we obtained unique experimental data about the material flow parameters: flow width, distributio
21、n of intensity and granulometric composition [6, 7]. The scheme of research equipment installation is shown on Figure 1. The research mechanism of original construction was used during the experiments. Before the discha
22、rge of the investigation portions the console of me</p><p> The third cycle using the described research installation was carried out at JSC “Kryvorizhstal” on BF-9 in 1989. These investigations along with
23、estimation of charge distribution trajectories included the investigation of distribution to the chute positions and stock surface circles of coke mixed with pellets, agglomerate and ore [7]. </p><p> Afte
24、r it the pre-launch investigations according to the described technique using the installation on Figure 1 were not done anymore, because each definite case needs constructing new research equipment considering construct
25、ional peculiarities of the real object. Unfortunately, in spite of our publications and speeches on congresses and meetings, some Ukrainian and Russian plants still do not accomplish pre-launch investigations before the
26、 starting of new or repaired blast furnaces and do not u</p><p> In 2007 after the 1st rate general overhaul with reconstruction the blast furnace with the capacity of 3000 m3 was equipped with chute bell-l
27、ess top charging system constructed by “Azovmash”. However, the pre-launch investigations were not done. It resulted in long period of furnace assimilation and its insertion to target parameters [8]. In September 2010, t
28、he administration of the enterprise made a decision to stop and blow-down the furnace to the bosh and further pre-launch researches during </p><p> According to the regular technique of Iron & Steel Ins
29、titute the definition of geometric parameters of charge flow was accomplished by gauging rods 3.0 m long installed vertically on stockline wearing plates of the shaft top through the holes of furnace offtakes. The basic
30、results of measurement accomplished when bell-less top charging system is set in the angle position “10” (49.5°) are shown in Figure 2. We should note that according to the results of pre-calculation of Science of
31、 Machines </p><p> As follows from Figure 2 during the charging of the material with chute slope angle equal to 49.5° the adjustment of middles of intensive part of charge flow and marginal 10th circl
32、e of shaft top is provided. During the coke and iron-ore materials charging we observed not significant difference in averaged distances from the cross points of flow middles to the furnace axis. This difference means th
33、at iron-ore materials are closer to furnace walls than coke. However, the charge of materials on th</p><p> Distance from the furnace ,m</p><p> Figure1. Installation scheme of reach equipment
34、 on BF-5,JSC”severstal”in1986[6]I-bell-less top charging system chute,II-loadingchute,III-research unit</p><p> FIGURE 2. Pre-caluclated and actual trajectories of coke (a) and iron-ore(b) flow in the worki
35、ng space of BF with capacity 3000m3 during the charge of portion from 10th angle position of chute bell-less top charging system (49.5°)</p><p> During the charge of iron-ore materials into the furnace
36、 we noticed a significant change of flow trajectory along the shaft top radius (Figure 3c, d). We think that it is a result of the iron-ore mixture shift in the central pipe of bell-less top charging system in the side w
37、hich is opposite to charging hopper. It leads to different initial conditions </p><p> Figure 3. The location of crossing points of charge materials flow with stockline wearing plates during the loading of
38、blast furnace with capacity 3000 m3: H1, H2 – hoppers of bell-less top charging system; FH – fitting hole; 0?…300? – stations of bell-less top charging system chute; OT1…OT4 – offtakes; BWS – bridge wall slope</p>
39、<p> of the material flow through the chute distributor depending on circumferential chute position. The shown peculiarities of iron-containing material charging confirm the reasonability of using special charging
40、 modes with changing of material kind in the hoppers of bell-less top charging system in order to provide the compensation of circumferential inequality of charge distribution. The acceptable variant of such charge mode
41、is the usage of special programs of bell-less top charging system for th</p><p> The special peculiarity of investigated furnace equipping is absence of radial gas-selecting machines, probes of which were u
42、sually used for definition of material flow trajectories by the marks of this material, left on their whitened surface (Figure 1),and for measuring of charge stock in the furnace shaft with mechanical profilometer on the
43、 basis of radial probes. </p><p> The definition of charge materials trajectories in the working space of the investigated furnace corresponding to axile (2nd) and intermediate (4th) angle positions of chu
44、te was completed by new technique developed by the authors. It is based on the formation of geometrical crests by directed charging of charge material portions from the mentioned angle positions of chute with further mea
45、suring of charge stock profile through the fitting hole (Figure 4). </p><p> The results of charge stock profile and calculated trajectory of material flow are shown on Figure 5. It shows that precalculated
46、 trajectories of charge materials flow in the furnace are rather close to actual trajectories. The chosen working angles of chute slope correspond to their reasonable values. The results of measurements shown on the Figu
47、res 2 and 5c are of the greatest practical as they are accomplished in the closest conditions to furnace charging ones in its working regime. We should</p><p> Figure4. The definition of stock surface profi
48、le of the charge with laser profilometer through the fitting and trajectory border of charge materals according to the marking left on the wooden rods :1-dimensional beam;2-level;3-laserdistance gange;4-laser ray;5-charg
49、e materal flow 6-gauging rod;7-charge flow marking on the rod ;8-rope</p><p> Conclusions </p><p> The expansion of bell-less top charging system application on the blast furnaces of different
50、 capacity, the change of constructive solutions and creating of alternative bell-less top charging system constructions with different kinds of charge distributors </p><p> increases relevancy of developme
51、nt and application of new means and methods of prelaunch investigations running for comparative.</p><p> The results of investigation of charge materials flow trajectory in shaft top space and their positio
52、n on the stock surface which were mentioned in this article are completed according to the new technique by measuring with laser distance gauge after its discharge in the set point of chute distributor slope. These inves
53、tigations are accomplished by the author in 2010 on the BF with the capacity 3 000 m3 and equipped with chute bell-less top charging system. The measuring of crest position and es</p><p> Figure 5. Precalcu
54、lated trajectories of material flow trajectories in the furnace working space with capacity 3 000 m3 and profiles of charge stock: а – after the charge of 3 portions from the 4th angle position of bell-less top charging
55、system; b - after the charge of 3 portions from the 4th angle position and 2 portions from 2nd angle position; c – charge of iron-ore materials from 4th angle position and portion of coke from 2nd angle position</p>
56、;<p> without putting the investigators on the stock surface and to hold them during short stops of the furnace with opening of fitting hole because of the high temperatures in shaft space and gas contamination.
57、The application of new technique essentially expands the opportunities of immediate realization of such investigations and production of great amount of information about the trajectories of charge flow and stock surface
58、 formation during the charge of different materials and their compositions</p><p> References </p><p> 1. V.I. Bolshakov Teoriya i Praktika Zagruzki Domennykh Pechey, Moscow, Metallurgiya, 199
59、0, 256 p.* </p><p> 2. V.I. Bolshakov Tekhnologiya Vysokoeffektivnoy Energosberegajushchey Domennoy Plavki, Kyiv, Naukova Dumka, 2007, 412 p. * </p><p> 3. V.P. Tarasov Gazodinamika Domennogo
60、 Protsessa, Moscow, Metallurgiya, 1982, 224 p. * </p><p> 4. V.I. Bolshakov, A.Ju. Zarembo, A.S. Salo Voprosy Proizvodstva Chuguna V Domennykh Pechakh, Moscow, Metallurgy, 1984, No.11, pp. 60 – 64. * </
61、p><p> 5. V.L. Pokryshkin, V.I. Bolshakov, I.T. Khomich Stal, 1982, No. 11, pp. 13 – 16. * </p><p> 6. V.I. Bolshakov, A. Yu. Zarembo, N.G. Ivancha Obzornaya Informatsiya, Moscow, </p><
62、;p> Institute “Chermetinformatsiya”, 1989, 53 p. * </p><p> 7. V.I. Bolshakov, A.Ju. Zarembo, N.G. Ivancha Metallurgicheskaya i Gornorudnaya Promyshlennost, 2007, No. 4, pp. 75 – 79. * </p><p
63、> 8. V.I. Bolshakov, N.G. Ivancha, V.V. Lyebed’, S.T. Shuliko Metallurgicheskaya i Gornorudnaya Promyshlennost, 2008, No. 4, pp. 99-104. * * Published in Russian Received February 18, 2011 </p><p> Боль
64、шаков В.И., Лебедь В.В., </p><p> Жеребецкий А.А. </p><p> Рассмотрены методы проведения предпусковых исследований траекторий движения шихты в колошниковом пространстве и её ра
65、сположения на поверхности </p><p> засыпи при загрузке бесконусным </p><p> загрузочным устройством. Представлены методические основы </p><p> проведения предпусковых исследов
66、аний с применением лазерного дальномера.</p><p> 新型高爐預(yù)生產(chǎn)實驗研究</p><p> 摘要:這項高爐預(yù)生產(chǎn)實驗是關(guān)于爐頂斜槽和高爐爐頂空間與高爐無料鐘爐頂?shù)膽?yīng)用。這種預(yù)生產(chǎn)實驗是通過激光測距儀來實現(xiàn)。</p><p> 關(guān)鍵詞:高爐 預(yù)生產(chǎn)實驗 布料軌道 爐頂布料空間</p><p&g
67、t;<b> 1、引言</b></p><p> 高爐爐頂布料方式對提高高爐生產(chǎn)率很重要?,F(xiàn)在高爐操作者已經(jīng)積累了大量的經(jīng)驗和各種各樣的高爐布料方法。然而通過料鐘在上料過程中對高爐布料是很困難的。在高爐布料過程中,從料鐘開始。軌道幾乎是直線型的。因此高爐料線波峰位置是改變的。原料在高爐中分配半徑是由斜坡爐料位置的變化而定義。無料鐘爐頂布料系統(tǒng)通過斜坡表面對上料過程進(jìn)行科學(xué)的不均勻布料。在
68、上料過程中我們可以通過控制斜坡來改變上料方式。</p><p> 高爐爐頂爐料流動特點需要對無料鐘爐頂容量、布料方式進(jìn)行控制。物料從斜槽中流出的流體力學(xué)計算公式鋼鐵協(xié)會以布料軌道和斜坡工作角度來計算爐頂?shù)牧黧w力學(xué)。由于原始數(shù)據(jù)積累的復(fù)雜性導(dǎo)致對斜槽軌道一些數(shù)據(jù)更正的必要性。根據(jù)高爐預(yù)生產(chǎn)實驗數(shù)據(jù),鋼鐵協(xié)會已經(jīng)收集了大量的高爐預(yù)生產(chǎn)實驗數(shù)據(jù)。這可以使我們增加一些對高爐爐料流體力學(xué)參數(shù)與斜坡角度改變。</p&
69、gt;<p> 世界上對高爐進(jìn)行有益實驗。對高爐應(yīng)用不同容量和不同方式無料鐘爐頂進(jìn)行布料需要大量的不同方法進(jìn)行研究。這需要對高爐進(jìn)行大量預(yù)生產(chǎn)實驗和對高爐設(shè)備的改進(jìn)。</p><p> 多年的實驗,現(xiàn)代化高爐技術(shù)與設(shè)備利用來估量高爐預(yù)生產(chǎn)過程的分配是否可提高高爐利用率。這項實驗?zāi)康脑谟谡{(diào)查和新技術(shù)的利用,以及實驗方法的實施。</p><p><b> 2、結(jié)果
70、與討論</b></p><p> 高爐爐料在斜坡的流動計算工藝包括對爐頂爐料流動交叉點的位置變化和爐頂?shù)谋Wo(hù)。第一個對無料鐘高爐爐頂布料實驗(Novolipetsk鋼鐵廠6#高爐與Krvorizhstal鋼鐵廠9#高爐)在前蘇聯(lián)1978~1979年以測量桿(被氣體覆蓋在爐料樣本在斜坡分配之前)。特殊的上料軌道計算方式使其數(shù)據(jù)可靠并且操作簡單,即使甚至在今天也使用。然而其缺點是不可能定義軌道所對應(yīng)材料
71、加載到軸與中</p><p> 間區(qū)域的半徑,以通常的研究參數(shù)和模型研究人員無法獲得有效的實驗數(shù)據(jù)。因此它需要開發(fā)和使用新的研究方法和實驗設(shè)備,用來獲得大量準(zhǔn)確的數(shù)據(jù)。</p><p> 高爐工作者為無料鐘爐頂建立了一個特殊的布料方式這使我們可以建立一個特殊的布料方式,這使我們可以記錄爐料流動寬度。當(dāng)其在爐頂空間流動和選料過程中,它們進(jìn)一步稱量篩選和分析燃料重和爐料速度。</p&
72、gt;<p> 在P·Wuerthe Company設(shè)計出第一個無料鐘布料系統(tǒng),在1979年5034m3Jsc Kryvorizhstal的幫助下完成系統(tǒng),但是金屬工業(yè)部在20年內(nèi)公布實驗結(jié)果。</p><p> 第二個類似的調(diào)查由Jsc Severstal在5#高爐(5580m3)在1986年進(jìn)行。根據(jù)這些結(jié)果我們獲得一些獨特的數(shù)據(jù)(爐料流動參數(shù))。例如:爐料流動寬度、爐料分布密度和
73、粒度組成。設(shè)計研究方案如圖1.實驗過程中將原始測量機(jī)械設(shè)備通過軸頂部控制臺放入適應(yīng)孔中進(jìn)行測量。機(jī)器工作部分長2.6m由13個單位組成,以與水平成45°嵌在上面,并且在一定的時間內(nèi)可以控制爐料流動。當(dāng)料斗打開時斜槽在料斗的上面時,料斗關(guān)閉。所獲得的實驗數(shù)據(jù)允許我們進(jìn)行進(jìn)一步的實驗研究爐料在爐頂?shù)牧黧w力學(xué)和爐料分布。</p><p> 第三個實驗由由JSC Keyvorizhstal在1989年9#高爐
74、進(jìn)行實施。這些研究計算爐料分配軌道包括爐料分配位置包括焦炭、燒結(jié)礦球團(tuán)礦和原礦石的分配計算。</p><p> 在進(jìn)行預(yù)生產(chǎn)實驗之后,根據(jù)描述的高爐工藝并沒有進(jìn)行測試。因為每一個準(zhǔn)確的實驗數(shù)據(jù)需要建立新的研究設(shè)備,考慮到現(xiàn)實中設(shè)備的特點。不幸的是烏克蘭與蘇聯(lián)并沒有打算在建立新高爐和高爐大修之前繼續(xù)課題研究在鋼鐵協(xié)會會議上。所以無法完成高爐爐料生產(chǎn)參數(shù)與能耗參數(shù)的獲得。</p><p>
75、 2007年1#3000m3高爐重建以后配備了由Azovmash設(shè)計的無料鐘爐頂。但是由于并沒有進(jìn)行預(yù)生產(chǎn)實驗,這導(dǎo)致了高爐在這段期間不順行并且一些參數(shù)錯誤。2010年9月決定對高爐進(jìn)行預(yù)生產(chǎn)實驗,對高爐的爐腹進(jìn)行分析并對爐頂爐料分配進(jìn)行預(yù)生產(chǎn)實驗。在煉鐵過程中這是減少能量損失與高爐溫控的手段。 </p><p> 根據(jù)常規(guī),鋼鐵協(xié)會將爐頂爐料流動幾何參數(shù)定義為由3m測量桿垂直安裝在料線的頂部通過爐膛出口孔。當(dāng)
76、無料鐘爐頂布料系統(tǒng)以斜坡10以49.5°角度安裝時完成測量,如圖2所示,我們根據(jù)結(jié)果指出上料軌道以50.4°左右為第十角位置的槽(實際角度為49.8°)。</p><p> 如圖2,在上料過程中(與溜槽傾角為49.5°)調(diào)整中間爐料密集部分和爐</p><p> 頂?shù)谑遣邸T诨旌仙狭线^程中我們無法明顯觀察到爐料由交叉點向爐軸流動,這一點說明鐵原
77、料比焦炭更接近爐壁。然而爐頂布料是由完全打開節(jié)流閥存儲料斗的無料鐘系統(tǒng)完成。這將導(dǎo)致一些錯誤。對于偏差小于100mm的原料可以直接入爐(不需要對礦石采取處理)。在鐵礦石原料進(jìn)入高爐中,我們發(fā)現(xiàn)爐頂爐料流動半徑發(fā)生改變(表3C,d),我們認(rèn)為這個結(jié)果是因為鐵礦石混合物在無料鐘爐頂中央管系統(tǒng)有一個料斗。為了獲得不同的布料方式,我們可以通過含鐵鐵料的特點進(jìn)行布料。布料方式的改變可以通過無料鐘系統(tǒng)中原料與焦炭的混合實現(xiàn)。</p>
78、<p> 這種調(diào)查高爐的方法是不需要徑向氣體選擇機(jī)探針。這通常用于物料軌跡,離開表面測量爐料在爐軸與機(jī)械徑向探針的輪廓。</p><p> 高爐工作空間物料軌道的定義由相應(yīng)的第二軸與中間第四軸的角槽位置來確定。新的技術(shù)開發(fā)者認(rèn)為,這是基于形成幾何波峰,通過定向布料,從角槽進(jìn)一步測量適應(yīng)孔的布料狀況。</p><p> 爐料儲存與爐料流動軌道計算如表5.這表示計算結(jié)果與實際狀
79、況吻合。所選擇的斜坡角度與實際吻合。對高爐整個空間的測量,我們應(yīng)當(dāng)指出根據(jù)實驗表2與5C是最接近高爐實際工作情況。并且通過延長設(shè)備有一些好處:精準(zhǔn)耗費少。根據(jù)新技術(shù)可以在高溫和氣體污染的條件下進(jìn)行上料,這也可以使高爐在開爐點火時使用。測量也可以通過其他孔和凹槽進(jìn)行測量。這項技術(shù)缺點是激光設(shè)備過于敏感。對于抗灰塵性差和缺少圓圈布料。</p><p><b> 3、結(jié)論</b></p&g
80、t;<p> 無料鐘爐頂技術(shù)在不同容積的高爐上實施方案發(fā)生改變。無料鐘爐頂?shù)母郀t布料方式增加了高爐預(yù)生產(chǎn)實驗的應(yīng)用和對高爐未來發(fā)展與高爐生產(chǎn)數(shù)據(jù)有重要意義。</p><p> 這篇文章提到的高爐爐頂和其位置已經(jīng)由新的激光技術(shù)通過斜坡上的爐料測量完成,這些調(diào)查在2010年由作者以3000m3的無料鐘爐頂測量完成。這可以使我們不用人力資源的條件下完成實驗。新的技術(shù)對促進(jìn)這項實驗與爐料軌道的測量(爐頂
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工類外文翻譯---高爐煉鐵
- 畢業(yè)論文---?;郀t礦渣在水泥生產(chǎn)中的應(yīng)用研究(含外文翻譯)
- 外文翻譯--新型水泥生產(chǎn)工藝的可行性研究要求
- 外文翻譯-新型水泥生產(chǎn)工藝的可行性研究要求.doc
- 醋酸生產(chǎn)外文翻譯
- 外文翻譯--新型高壓清洗車
- 高爐生產(chǎn)多目標(biāo)優(yōu)化模型及高爐煤氣預(yù)測研究.pdf
- 新型碳纖維生產(chǎn)線預(yù)氧化裝備的研究.pdf
- 外文翻譯--實驗方法
- 農(nóng)業(yè)生產(chǎn)外文翻譯
- 高爐渣破碎過程實驗研究.pdf
- 外文翻譯--生產(chǎn)線平衡
- 生產(chǎn)線平衡外文翻譯
- 高爐粉塵還原脫鋅實驗研究.pdf
- 高爐焦炭預(yù)篩分系統(tǒng)設(shè)計與應(yīng)用.pdf
- 高爐制粉干燥爐生產(chǎn)控制
- 高爐無料鐘布料實驗研究.pdf
- [雙語翻譯]--外文翻譯--(節(jié)選)清潔生產(chǎn)和可持續(xù)發(fā)展外文翻譯
- 煉鐵高爐新型節(jié)能風(fēng)口的研究及應(yīng)用.pdf
- 外文翻譯--再議生產(chǎn)效率的測度
評論
0/150
提交評論