版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 中文3280字</b></p><p> 畢業(yè)設(shè)計(jì)(論文)外文資料翻譯</p><p> 學(xué)院: 機(jī)械工程學(xué)院 </p><p> 專業(yè): 機(jī)械設(shè)計(jì)制造及其自動(dòng)化 </p><p> 班級(jí):
2、 </p><p> 姓名: </p><p> 學(xué)號(hào): </p><p> 外文出處: Tyler T J, Hill R, Lai E. Friction gene
3、rated ultrasound from geotechnical materials[J]. Ultrasonics, 2004, 42(1): 169-172. </p><p> 附 件:1、外文原文;2、外文資料翻譯譯文。</p><p><b> 附件1:</b></p><p> Friction
4、generated ultrasound from geotechnical materials</p><p> TJ Tyler, R Hill, E Lai</p><p><b> Abstract</b></p><p> Drilling is a process involved with product manufactu
5、ring and for civil engineers, site preparation. The usual requirement is for efficient material removal. In this study, the friction pair interaction generated by a drilling process provides ultrasound information relate
6、d to parameters for the geotechnical material being drilled, where the drill bit has non-degrading ultrasonic characteristics and no essential requirement for material removal. This study has considered monitoring the ul
7、trasoni</p><p> Introduction </p><p> The ultrasound generated from a solid–solid friction pair has been the main focus of research concerning friction-generated ultrasound, mainly associated
8、with rotating and reciprocating machines. A frictional process developed during relative movement between contacting materials has an inherent level of wear that eventually would result in failure. Monitoring the ultraso
9、nic signal generated from machinery has become an alternative condition-monitoring tool, as the generated signal contains info</p><p> relationship between the AERMS and the sliding velocity. Jiaa and Dornf
10、ield [4] monitored the AE generated by a pin on disk experiment, highlighting that the AE is caused by impulsive shock due to asperity collisions and micro-vibrations excited by stick–slip phenomena. The research shows t
11、hat the AERMS increases with load while a linear relationship exists between the relative surface velocity and the AERMS. Sarychev and Shchavelin [5] describe the frictional process and the generated acoustic </p>
12、<p> The general rule for the dependence of the count rate N_ on the sliding velocity is in the form: N_ A t BvX e2T where A and B are constants and X P1. A similar relationship also applies for the dependence o
13、f the load on the count rate, but the exponent X 61. A further relationship was expressed relating the AE activity to the regime of friction in elastic contact: N_ a k N0:71h0:71A0:71 c r0:90R1:60 a V e3T where N is the
14、 normal load, h the generalised elastic modulus, Ac the counter area of </p><p> Current studies in friction-generated acoustics have shown that the acoustic signals contain information relating to the mate
15、rial parameters of the friction pair. The work in this study uses the acoustic signal as a tool to characterise the material properties of the friction pair. The idea for this study originates from a study by Hill [8] fo
16、r Scientifics, when it became apparent that monitoring the ultrasound generated by a drilling process process had potential for ground condition monitoring</p><p> 2. Experimental design</p><p>
17、; A simplified drilling arrangement has been constructed where a rotating probe is used to maximise the friction at the probe-tip–granular contact. The probe string is designed, using a suitable coupling device, so tha
18、t the ultrasonic signal is transmitted from the probe tip to a stationary piezoelectric sensor. The signal is amplified by 60 dB and filtered between 250 and 500 kHz. The captured signal is therefore in the mid-ultrasoni
19、c range and relates to the transducer monitoring frequency used</p><p> 3. Results</p><p> The effect of load on the count rate can be seen in Fig. 2a. The signal values on the left of the fig
20、ure correspond to the probe tip not being in contact with the granular medium. When the probe is pushed into the granular material the load increases. The data highlights a stabilizatio(reduction) in the count rate and i
21、s referred to as the ‘‘characteristic count rate’’ for a particular friction pair. The stabilisation of the count rate means that no more oscillations are being produced due to an</p><p> different particle
22、 sizes still exist. Results have revealed that the count rate value does not significantly change due to the addition of water and that the count ratesignal is mainly dependent on the number of contacts formed. Therefore
23、, regardless of the water content of the sand it is possible to obtain an approximate evaluation of the average particle size.</p><p> The ultrasonic signal energy appears to be sensitive to a number of par
24、ameters including the particle size, water content, density and mineralogy. Fig. 3a shows the ultrasonic energy signal plotted against the applied force for two different initial dry densities (compacted and loose). Resu
25、lts indicate that the energy varies linearly with the applied load and the gradient increases with a reduction in the initial density. The effect of varying the density is more apparent when using smaller grai</p>
26、<p> The effect of increasing the water content of the granular sample causes the sand to become acoustically quieter (a significant drop in signal amplitude). Although the sand becomes quieter, the rate of chang
27、e of the ultrasonic energy due to the applied force is not affected by varying the level of water content in a wet sample but there is a noticeable difference in the gradient when comparing a dry sample with a wet sample
28、.</p><p> 4. Conclusions</p><p> Results have shown that when probing into granular materials, using a constant sliding velocity the count rate becomes stable (characteristic count rate). The
29、characteristic count rate is affected by a change in the number probe–granular contacts and therefore provides a method for characterising the particle size. The water content of a granular sample has little effect on th
30、e characteristic count rate and data agrees with the assumption stated by Baranov et al. [6] that the count rate is propo</p><p> The ultrasonic energy signal is sensitive to a variety of parameters includi
31、ng the load, sliding velocity, particle size, density, water content and mineralogy. Results have indicated that the contact pressure, which is affected by altering the density and particle size, affects the acoustic ene
32、rgy signal. However, a continuous increase in the ultrasonic energy due to larger particle sizes, which was expected, did not occur. It is possible that larger particles produce larger particle-probe cont</p><
33、p> References</p><p> [1] T.J. Holroyd, N. Randall, Use of acoustic emission for machine condition monitoring, Condition Monitoring 35 (2) (1993) 75–79.</p><p> [2] S.T.S. Bukkapatnam, S.R
34、.T. Kumara, A. Lakhtakia, Analysis of acoustic emission signals in machining, ASME Journal of Manufacturing Science and Engineering (1999) 183–207.</p><p> [3] E.N. Diei, Acoustic emission sensing of tool w
35、ear in face milling, Journal of Engineering for Industry 109 (1987) 234–240.</p><p> [4] C.L. Jiaa, D.A. Dornfield, Experimental studies of sliding friction and wear via acoustic emission signal analysis, W
36、ear 139 (1990) 403–424.</p><p> [5] G.A. Sarychev, V.M. Shchavelin, Acoustic emission method for research and control of friction pairs, Tribology International 24 (1) (1991) 11–16.</p><p> [6
37、] V.M. Baranov, E.M. Kudryavtsev, G.A. Sarychev, Calculation of the parameters of acoustic emission when there is external friction between solids, Russian Journal of Non-Destructive Testing 8 (1995) 569–577.</p>
38、<p> [7] C. Henrique, M.A. Aguirre, A. Calvo, I. Ippolito, D. Bideau, Experimental acoustic technique in granular flows, Powder Technology94 (1997) 85–89.</p><p> [8] R. Hill, Confidential consultancy
39、 Report, Scientifics, 1997.</p><p><b> 附件2:</b></p><p><b> 巖土材料的摩擦聲波</b></p><p><b> 摘要</b></p><p> 鉆井作業(yè)涉及到設(shè)備生產(chǎn),對(duì)于工程師來(lái)說(shuō),還包括地址的選擇。
40、鉆井通常要求高效地去除材料。在這項(xiàng)研究中,鉆井過(guò)程中摩擦副的相互作用提供了被鉆削巖土材料相關(guān)參數(shù)的超聲信息,在這些信息中鉆頭具有非降解的超聲特性,對(duì)于材料去除沒(méi)有基本的要求。這項(xiàng)研究認(rèn)為監(jiān)測(cè)鉆井過(guò)程中產(chǎn)生的超聲波信號(hào),為表征巖土材料鉆削參數(shù)提供了新的觀點(diǎn),并提供了一種識(shí)別或表征地面結(jié)構(gòu)的新方法。巖土材料系統(tǒng)的鉆削,通常涉及一個(gè)旋轉(zhuǎn)探頭和顆粒復(fù)合介質(zhì)的相互作用。測(cè)量旋轉(zhuǎn)探頭的載荷和角速度可用來(lái)確定它們和超聲信號(hào)的相關(guān)性。顆粒材料的樣本已經(jīng)
41、把粒徑控制在一定范圍內(nèi)。精力主要集中在確定晶粒尺寸、堆積密度和顆粒材料的含水量對(duì)超聲信號(hào)的影響。將不同粒徑、密度、水分含量和相關(guān)超聲波信號(hào)的顆粒樣本進(jìn)行比較,解釋每個(gè)變量的影響和有關(guān)這種影響的現(xiàn)有理論。這項(xiàng)研究一般的目的是評(píng)估鉆井的超聲監(jiān)測(cè),并估計(jì)其在巖土地表實(shí)時(shí)狀態(tài)監(jiān)測(cè)中的應(yīng)用潛力,用它來(lái)代替現(xiàn)有的一些方法。</p><p><b> 1.引言</b></p><p&
42、gt; 固體–固體摩擦副產(chǎn)生的超聲波是摩擦產(chǎn)生超聲波研究的重點(diǎn),主要涉及旋轉(zhuǎn)和往復(fù)運(yùn)動(dòng)的機(jī)械。相互接觸的材料相對(duì)運(yùn)動(dòng)過(guò)程中的摩擦產(chǎn)生固有的磨損,最終會(huì)導(dǎo)致工作故障。監(jiān)測(cè)機(jī)械產(chǎn)生的超聲波信號(hào)已成為一種不可替代的機(jī)器狀態(tài)監(jiān)測(cè)方法,因?yàn)槌暡ㄐ盘?hào)包含了與摩擦副的微觀環(huán)境相關(guān)的信息。當(dāng)機(jī)器零件發(fā)生磨損時(shí),用這種方法來(lái)查明故障是可行的,因而降低了因?yàn)?zāi)難性故障導(dǎo)致生產(chǎn)停機(jī)所帶來(lái)的風(fēng)險(xiǎn)。Holroyd和 Randall [ 1 ]論述了利用聲音輻射
43、技術(shù)(AE)檢測(cè)潤(rùn)滑、超載、磨損變化的靈敏度問(wèn)題,并查閱了許多其他用于分析聲學(xué)特征的技術(shù)。Bukkapatnam等人[ 2 ]論述了用于分析摩擦聲信號(hào)更先進(jìn)的方法,并提出了一種基于混沌理論、小波和神經(jīng)網(wǎng)絡(luò)的新的分析技術(shù)。大多數(shù)有關(guān)狀態(tài)監(jiān)測(cè)的研究更關(guān)注由磨損引起的聲信號(hào)變化,而一些研究也已經(jīng)注意到與產(chǎn)生聲信號(hào)相關(guān)的參數(shù)。Diei [3]監(jiān)測(cè)了表面磨削過(guò)程中刀具磨損所產(chǎn)生的聲音輻射,提出了AERMS電壓和摩擦能量耗散率之間的冪函數(shù)關(guān)系 ek
44、gssAaV Tm=2 e1T 。其中k和m取決于聲音輻射測(cè)量系統(tǒng)和摩擦副材料性能常數(shù);g是摩擦副的表面粗糙度和彈性度的函數(shù);s</p><p> 目前摩擦聲學(xué)研究已經(jīng)表明聲音信號(hào)包含了與摩擦副材料參數(shù)相關(guān)的信息。這項(xiàng)研究工作用聲信號(hào)作為一種表征摩擦副材料特性的工具。當(dāng)監(jiān)測(cè)鉆井過(guò)程中產(chǎn)生的超聲波對(duì)地面狀態(tài)監(jiān)測(cè)的作用變得明顯的時(shí)候,這種思想在Hill[ 8 ]為Scientifics所做的一項(xiàng)研究中產(chǎn)生了。這項(xiàng)
45、工作的總體目標(biāo)是研究一種利用典型鉆井過(guò)程并監(jiān)測(cè)鉆頭和巖土材料相互作用產(chǎn)生的超聲波來(lái)描述巖土材料特性的方法。</p><p><b> 實(shí)驗(yàn)設(shè)計(jì)</b></p><p> 一個(gè)簡(jiǎn)單的鉆井裝置具有一個(gè)使探針–顆粒接觸面積最大化的旋轉(zhuǎn)探頭。使用合適的耦合裝置設(shè)計(jì)探頭串,使超聲波信號(hào)從探頭傳輸?shù)揭粋€(gè)固定的壓電傳感器。該信號(hào)被放大了60分貝并過(guò)濾掉250和500千赫之間的信
46、號(hào)。因此所得到的信號(hào)在中超聲波的范圍內(nèi)并與所使用傳感器的監(jiān)測(cè)頻率有關(guān)。實(shí)驗(yàn)裝置示意圖如圖1所示。探頭伸入具有一定粒徑、初始密度和含水量的顆粒介質(zhì)中旋轉(zhuǎn)。探頭的進(jìn)給速度和角速度設(shè)置為一定值,并同時(shí)監(jiān)測(cè)所施加的載荷、計(jì)數(shù)率和超聲波能量。粒徑、密度和含水量對(duì)兩種超聲參數(shù)(計(jì)數(shù)率和能量)的影響被進(jìn)行了研究,這種研究的目的是為未來(lái)地面狀態(tài)監(jiān)測(cè)提供一種選擇。</p><p><b> 實(shí)驗(yàn)結(jié)果</b>
47、</p><p> 載荷對(duì)于計(jì)數(shù)率的影響如圖2a所示。位于圖左側(cè)的信號(hào)數(shù)值對(duì)應(yīng)不與顆粒介質(zhì)接觸的探針。當(dāng)探頭推入顆粒材料時(shí),負(fù)載隨之增加。對(duì)于計(jì)數(shù)率模型,所得數(shù)據(jù)要求穩(wěn)定可靠(原始),并將之稱為一個(gè)特定摩擦副的“特征計(jì)數(shù)率”。計(jì)數(shù)率的穩(wěn)定意味著負(fù)載的增加不會(huì)產(chǎn)生更多的震蕩,因此信號(hào)幅度只受振幅增加的影響。實(shí)驗(yàn)中使用了不同等級(jí)的顆粒材料,并且其特征計(jì)數(shù)率也已被監(jiān)測(cè)。 研究結(jié)果表明,隨著平均粒徑的增大特征計(jì)數(shù)率會(huì)降
48、低。在圖2b中,對(duì)八份沙子樣本進(jìn)行了特征計(jì)數(shù)率與粒徑的比較。粒徑越大,接觸面積就越小。因此實(shí)驗(yàn)結(jié)果印證了Baranov等人[ 6 ]提出的計(jì)數(shù)率與單位時(shí)間內(nèi)接觸次數(shù)成正比的假設(shè)。在圖2c中,實(shí)驗(yàn)結(jié)果表明含水量對(duì)特征計(jì)數(shù)率影響不大。使用四種不同尺寸的晶粒,畫出計(jì)數(shù)率與質(zhì)量含水率的關(guān)系曲線。盡管計(jì)數(shù)率發(fā)生很小的變化,但是不同粒徑產(chǎn)生的信號(hào)分離仍然存在。實(shí)驗(yàn)結(jié)果表明,增加水含量不會(huì)引起計(jì)數(shù)率地顯著變化,計(jì)數(shù)率信號(hào)主要取決于產(chǎn)生接觸的次數(shù)。因此
49、,無(wú)論沙子含水量多少,都可以獲得其平均粒度的近似計(jì)算。</p><p> 超聲波信號(hào)的能量似乎對(duì)包括顆粒大小、含水量、密度和礦物質(zhì)含量在內(nèi)的一些參數(shù)很敏感。圖3a顯示出超聲波能量信號(hào)與施加在兩份不同初始干密度(松散與密實(shí))樣本上的力的關(guān)系曲線。實(shí)驗(yàn)結(jié)果表明,超聲波信號(hào)的能量與施加的荷載線性相關(guān),相關(guān)線的斜率隨樣本初始密度的降低而增加。當(dāng)使用較小的晶粒尺寸時(shí),密度變化對(duì)超聲波信號(hào)能量的影響更為顯著。使用粒徑更小的
50、顆粒材料時(shí),密度的變化將對(duì)表面接觸區(qū)中探針–顆粒接觸次數(shù)產(chǎn)生更大的影響。較低的顆粒密度產(chǎn)生更少的接觸,因而荷載產(chǎn)生的壓力增大,并可能使荷載的函數(shù)——平均每振蕩的能量增加。預(yù)計(jì)由于較高的接觸壓力顆粒尺寸的增加也會(huì)使超聲波能量增加。圖3b顯示了由于對(duì)平均粒徑施加力而引起平均每振蕩能量的變化。結(jié)果表明在粒徑達(dá)到512 lm時(shí)超聲波能量參數(shù)和粒徑之間沒(méi)有特殊的關(guān)系。</p><p> 增加顆粒樣本的含水量導(dǎo)致沙子變得更
51、安靜(聲信號(hào)幅值顯著下降)。雖然沙子變得更安靜,在潮濕的沙子樣本中因施力產(chǎn)生的超聲波能量的變化率不受水含量變化的影響,但是當(dāng)把干燥的樣本與潮濕的樣本進(jìn)行比較時(shí),它們?cè)诼暡ㄌ荻壬先杂忻黠@的差異。</p><p><b> 結(jié)論</b></p><p> 實(shí)驗(yàn)結(jié)果表明,用一個(gè)恒定的滑動(dòng)速率探查顆粒材料時(shí),計(jì)數(shù)率趨于穩(wěn)定(特征計(jì)數(shù)率)。特征計(jì)數(shù)率受到探針–顆粒接觸次數(shù)的
52、影響,從而提供了一種用于表征顆粒粒徑的方法。顆粒樣本的含水量對(duì)特征計(jì)數(shù)率幾乎無(wú)影響。而且實(shí)驗(yàn)所得數(shù)據(jù)印證了Baranov等人[ 6 ]所提出的計(jì)數(shù)率與單位時(shí)間內(nèi)接觸次數(shù)成正比的假設(shè)。然而,實(shí)驗(yàn)所得數(shù)據(jù)不符合Sarychev和shchavelin [ 5 ]提出的一般規(guī)律,因?yàn)樘卣饔?jì)數(shù)率不依賴于所施加的力。實(shí)驗(yàn)結(jié)果提供了有力的證據(jù)來(lái)表明監(jiān)測(cè)特征計(jì)數(shù)率具有實(shí)現(xiàn)不依賴水分含量而識(shí)別地面結(jié)構(gòu)不同粒度層的潛力。</p><p&
53、gt; 超聲波能量信號(hào)對(duì)于包括負(fù)載、滑動(dòng)速率、粒徑、密度、含水量和礦物質(zhì)含量在內(nèi)的多種參數(shù)很敏感。實(shí)驗(yàn)結(jié)果表明受密度和粒徑變化影響的接觸壓力會(huì)影響聲波能量信號(hào)。然而,在意料之中,由于更大的顆粒尺寸而引起超聲波能量持續(xù)地增加不會(huì)發(fā)生。較大的顆粒產(chǎn)生較大的粒子-探頭接觸面積從而減小單一接觸點(diǎn)的接觸壓力是可能的,但需進(jìn)一步研究來(lái)支持這種觀點(diǎn)。很明顯,超聲波能量包含了與摩擦副參數(shù)相關(guān)的信息,但是為了完全了解與產(chǎn)生聲音信號(hào)相關(guān)的每個(gè)參數(shù)的分布,
54、還需要做進(jìn)一步的研究。</p><p><b> 參考文獻(xiàn)</b></p><p> [1] T.J. Holroyd, N. Randall, Use of acoustic emission for machine condition monitoring, Condition Monitoring 35 (2) (1993) 75–79.</p>
55、<p> [2] S.T.S. Bukkapatnam, S.R.T. Kumara, A. Lakhtakia, Analysis of acoustic emission signals in machining, ASME Journal of Manufacturing Science and Engineering (1999) 183–207.</p><p> [3] E.N. D
56、iei, Acoustic emission sensing of tool wear in face milling, Journal of Engineering for Industry 109 (1987) 234–240.</p><p> [4] C.L. Jiaa, D.A. Dornfield, Experimental studies of sliding friction and wear
57、via acoustic emission signal analysis, Wear 139 (1990) 403–424.</p><p> [5] G.A. Sarychev, V.M. Shchavelin, Acoustic emission method for research and control of friction pairs, Tribology International 24 (1
58、) (1991) 11–16.</p><p> [6] V.M. Baranov, E.M. Kudryavtsev, G.A. Sarychev, Calculation of the parameters of acoustic emission when there is external friction between solids, Russian Journal of Non-Destructi
59、ve Testing 8 (1995) 569–577.</p><p> [7] C. Henrique, M.A. Aguirre, A. Calvo, I. Ippolito, D. Bideau, Experimental acoustic technique in granular flows, Powder Technology94 (1997) 85–89.</p><p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 機(jī)械類畢業(yè)設(shè)計(jì)外文翻譯---軸承的摩擦與潤(rùn)滑
- 機(jī)械畢業(yè)設(shè)計(jì)外文翻譯
- 材料的可機(jī)加工性-畢業(yè)設(shè)計(jì)機(jī)械外文翻譯
- 材料畢業(yè)設(shè)計(jì)外文翻譯
- 機(jī)械類畢業(yè)設(shè)計(jì)外文文獻(xiàn)翻譯---軸承的摩擦與潤(rùn)滑
- 畢業(yè)設(shè)計(jì)機(jī)械外文翻譯--材料的可機(jī)加工性
- 畢業(yè)設(shè)計(jì)(機(jī)械)外文翻譯.doc
- 機(jī)械畢業(yè)設(shè)計(jì)---外文翻譯3
- 機(jī)械(數(shù)控)畢業(yè)設(shè)計(jì)外文翻譯
- 畢業(yè)設(shè)計(jì)(機(jī)械)外文翻譯.doc
- 機(jī)械專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 機(jī)械畢業(yè)設(shè)計(jì)外文翻譯.doc
- 機(jī)械畢業(yè)設(shè)計(jì)外文翻譯.doc
- 機(jī)械數(shù)控專業(yè)畢業(yè)設(shè)計(jì)外文翻譯
- 汽車專業(yè) 機(jī)械 畢業(yè)設(shè)計(jì)翻譯外文翻譯
- 機(jī)械手畢業(yè)設(shè)計(jì)外文翻譯
- 機(jī)械專業(yè)畢業(yè)設(shè)計(jì)外文翻譯1
- 機(jī)械專業(yè)畢業(yè)設(shè)計(jì)外文翻譯5
- 機(jī)械工程畢業(yè)設(shè)計(jì)外文翻譯
- 機(jī)械專業(yè)畢業(yè)設(shè)計(jì)--外文資料翻譯
評(píng)論
0/150
提交評(píng)論