

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 在放熱過(guò)程中對(duì)半導(dǎo)體熱電偶測(cè)量數(shù)據(jù)進(jìn)行數(shù)值分析</p><p> 在回收實(shí)驗(yàn)樣品后,并對(duì)其分析后得出,在高壓下快速凝聚物質(zhì)是觀察物質(zhì)物理性質(zhì)和化學(xué)性質(zhì)的動(dòng)態(tài)趨勢(shì)的重要基礎(chǔ)。在許多情況下不可能用一個(gè)特制的容器來(lái)存某種物質(zhì)的特定狀態(tài),所以會(huì)直接關(guān)系到?jīng)_擊波脈沖的物理參數(shù)變化。所以方法要求,人們盡可能的繼續(xù)保持對(duì)膠囊內(nèi)物質(zhì)進(jìn)行抽樣,并同時(shí)沖擊波要檢測(cè)物質(zhì),而且處在長(zhǎng)時(shí)間的放松狀態(tài)。人們還應(yīng)該記住
2、,沖擊波檢測(cè)膠囊實(shí)驗(yàn)是不同于純動(dòng)態(tài)實(shí)驗(yàn)?;谶@個(gè)原因,兩種方法所得到的結(jié)果簡(jiǎn)單的比較可得出許多的不正確和不足,特別是在研究某種物質(zhì)的化學(xué)變化。</p><p> 用沖擊波檢測(cè)物質(zhì)的方法,是根據(jù)某些問(wèn)題而相互結(jié)合的動(dòng)態(tài)方法,解決了傳統(tǒng)的回收凝聚物質(zhì)的方法。在放熱的過(guò)程中記錄半導(dǎo)體的熱電現(xiàn)象就是這樣的一個(gè)方法。別的的文章中僅僅只是涉及到對(duì)半導(dǎo)體熱電偶的原理的運(yùn)用。這些顯然不足以獲得有關(guān)連續(xù)變量的信息。本文對(duì)此提出了
3、建議用計(jì)算方法來(lái)分析問(wèn)題的一般方法,并為活性強(qiáng)的元素制訂解決方案其中錫是用(SNS)來(lái)解決。</p><p> 在對(duì)實(shí)驗(yàn)過(guò)程中所記錄的半導(dǎo)體熱電偶的放熱圖中,根據(jù)敏感元件內(nèi)部的結(jié)構(gòu)研究利用電平測(cè)量?jī)?nèi)部電極的結(jié)構(gòu),該電極通過(guò)平版石灰?guī)r絕緣套管來(lái)連接的。在沖擊波實(shí)驗(yàn)裝置中增加負(fù)荷使其速度高于1公里/秒(箭頭方向表示物體的運(yùn)動(dòng)方向)。在動(dòng)態(tài)壓力下降時(shí),艙內(nèi)溫度呈現(xiàn)一定分布,是隨時(shí)間變化而分布,是為了測(cè)量電路的電磁場(chǎng)而
4、發(fā)生的。假設(shè)電磁場(chǎng)是由于半導(dǎo)體的存在可得:</p><p> S是半導(dǎo)體的熱電勢(shì),TS1是熱電偶的內(nèi)部電極的溫度; TS2是熱電偶外部界面的溫度。符號(hào)的意義是熱電偶的內(nèi)部電極與外部界面之間的溫差。因此,該電路(存在接地電極情況下)如果>0而且>,那么就>0。當(dāng)半導(dǎo)體熱電偶沒(méi)有放熱過(guò)程,那么電磁場(chǎng)就下降到零,因?yàn)槔鋮s的熱電偶不存在電磁場(chǎng)。原因是在熱釋放過(guò)程中,將有一定的電磁場(chǎng)增長(zhǎng)下降到零之后,化
5、學(xué)反應(yīng)就會(huì)停止。所以本文對(duì)此提出了建議用計(jì)算方法來(lái)分析問(wèn)題的一般方法,并為活性強(qiáng)的元素制訂解決方案其中錫是用(SNS)來(lái)解決。</p><p> 如果電極兩端的電壓接近,那它就會(huì)被記錄,如果滿足電阻值>>,是測(cè)量設(shè)備的輸入電阻和是樣品的內(nèi)部電阻。如果= 50或75在沖擊波實(shí)驗(yàn)中就會(huì)被使用,很容易得出研究物質(zhì)的電導(dǎo)率和可直接測(cè)量半導(dǎo)體材的數(shù)值。原則上,樣品可以被放置一個(gè)的金屬箔內(nèi)與排除樣品之間產(chǎn)生的熱
6、電偶熱慣性低電極的電路。</p><p> 在實(shí)驗(yàn)中,我們進(jìn)行了合成反應(yīng)合成了放熱過(guò)程的超導(dǎo)材料陶瓷。熱電偶是由活性較強(qiáng)的錫做成,這是一個(gè)熱電功率為的半導(dǎo)體。按照規(guī)定,實(shí)驗(yàn)中的幾何參數(shù)為:,,。用沖擊波轟擊5mm厚的鐵板所產(chǎn)生的壓強(qiáng)為16GP。最初的樣本顯示:混合物由于存在高含量的單質(zhì)銅導(dǎo)致導(dǎo)電性較高。該熱電偶電阻不會(huì)使整個(gè)錄音期間0.1Re信號(hào)衰減。要使U隨時(shí)間t而變化,我們使用了能自動(dòng)記錄數(shù)據(jù)的F4226轉(zhuǎn)
7、換器把模擬信號(hào)轉(zhuǎn)換成數(shù)字信號(hào),在允許你改變掃描速度的基礎(chǔ)上,縮短周期。從示波器上的波形可知,沖擊波載荷著能使半導(dǎo)體進(jìn)行化學(xué)反應(yīng)的負(fù)脈沖。該過(guò)程可進(jìn)一步解釋為:在熱釋放狀態(tài)時(shí),樣本加熱反應(yīng)的情況下熱釋放產(chǎn)生了一個(gè)極性為正極的信號(hào)。事實(shí)上,這種脈沖必須是正極的,可從公式成立的條件解釋?zhuān)?gt;(所研究的混合物中含有活性較強(qiáng)的錫是用SNS來(lái)解決)和S> 0 。其次,約17毫秒后,沖擊波進(jìn)入樣品,由于放熱反應(yīng)使TS2的值增加。在電壓上升時(shí)
8、,使它在一段時(shí)間內(nèi)下降(這可能是因?yàn)樵诤铣蛇^(guò)程中形成了低電導(dǎo)率的中間產(chǎn)品)。因此會(huì)變得比更大。作為最終產(chǎn)品的形式最初的高導(dǎo)電性也會(huì)恢復(fù),因此,隨著的增長(zhǎng)。最后,降低了冷卻時(shí)間。</p><p> 很顯然,要得知示波器為什么會(huì)產(chǎn)生這樣波形,就必須建立數(shù)學(xué)模型對(duì)電物理過(guò)程進(jìn)行仿真實(shí)驗(yàn)。即使是在一個(gè)平面內(nèi),也是一個(gè)復(fù)雜的問(wèn)題,其中一個(gè)必須要解決的是不穩(wěn)定的情況下的導(dǎo)熱方程,也要考慮到在該樣本中的導(dǎo)電性能的變化等等。在
9、本論文中,我們考慮的一個(gè)關(guān)系到如何分析錫半導(dǎo)體熱電偶操作數(shù)值的特殊情況。在這里,反應(yīng)系統(tǒng)模型為放熱過(guò)程,不同比例的錫和硫的混合也可運(yùn)用與SNS。</p><p><b> 外文文獻(xiàn)翻譯原文2</b></p><p> OF SEMICONDUCTOR THERMOCOUPLE OPERATION IN RECORDING EXOTHERMIC PROCESSES
10、IN A RECOVERY CAPSULE</p><p> S. S. Nabatov, A. V. Kul'bachevskii, and A. V. Lebedev UDC 539.63+537.226</p><p> Numerical simulation is used to analyze the operation of a semiconductor tin
11、-monosulfide</p><p> thermocoupIe. The element is used to record ezothermic processes in shock-recovery experiments.</p><p> We solved the problem in a one-dimensional formulation by consideri
12、ng a multilayer scheme</p><p> that models the location of the sample and the thermocouple inside a real flat capsule. Numerical</p><p> calculations yield time dependences of the thermal elec
13、tromotive force (EMF) at various heatrelease</p><p> rates in the substance under study</p><p> High-speed methods of studying the properties of condensed material under shock compression and
14、shock-recovery experiments with subsequent analysis of the samples are the basis of the dynamic trend in high-pressure physics and chemistry [1]. In many cases, however, there are no sufficient grounds to assert that the
15、 state of the substance recovered in a special capsule is related directly to the changes in the physical parameters recorded in the shock-wave pulse. Methods are required that make it</p><p> According to
16、[2], this problem should be solved by various combined methods: dynamic methods, conventional recovery methods, and a new methodical approach based on continuous diagnostics of a substance inside a capsule using electric
17、al methods. Recording of exothermal processes based on the thermoelectric phenomenon in semiconductors is one such method [3]. The latter article, however, deals only with the principles of operation of a semiconductor t
18、hermocouple. These are obviously insufficient t</p><p> A diagram of experiments on the recording of exothermal processes in a recovery capsule with a semiconductor thermocouple is presented in Fig. 1. Subs
19、tance 4 under study with sensitive element 5 are placed inside a flat capsule for electric measurements between the front wall of case 1 and massive inside electrode 2. The electrode is insulated from the case by sleeve
20、3 made of lithographic limestone. Shock-wave loading of the experimental setup is produced by an aluminum striker accelerated by a</p><p> where S is the thermoelectric power of the semiconductor; Tsl is th
21、e temperature at the interface between the thermocouple and the internal electrode; Ts2 is the temperature at the interface between the sample and the thermocouple. The sign of the registered signal is determined by the
22、sign of S and that of the temperature difference between the faces of the thermocoup.le. Thus, for this circuit (grounded electrode-capsule case) /ΔE > 0 if S(T) > 0 and Ts2 > Tsl. When there is no exothermal pr
23、oc</p><p> If the voltage U across the electrodes is close to AE, it can only be recorded if the condition Re >> Ri is satisfied, where Re is the input resistance of the measuring device, and Ri is th
24、e internal resistance of the experimental unit. Since Re = 50 or 75 ~ are used in shock-wave experiments, it is easy to estimate the electrical conductivities of the studied substance and the semiconductor material for w
25、hich the quantity AE can be measured directly. In principle, the sample can be excluded fro</p><p> Figure 2 presents an oscilloscope trace that demonstrates the possibilities of the method. In the</p>
26、;<p> experiment, we registered the synthesis reaction (exothermal process) for superconducting CuaTibYtcOa ceramics. The thermocouple was made of tin monosulfide, which is a semiconductor compound with a thermoe
27、lectric power of +550 #V/K under normal conditions. In accordance with the notation in Fig. 1,the geometric parameters of the experimental arrangement were as follows: I1 = 7 ram, 12 = 13 = 1 ram, and /4 = 16 ram. The am
28、plitude of the shock wave generated inside the steel wall of the capsule b</p><p> follows, which is caused by an increase in Ts2 due to the exothermaI reaction. The rise in voltage, however, is followed by
29、 its drop for some time (this is probably due to the fact that intermediate products with a low electrical conductivity are formed in the process of synthesis). As a result, Ri becomes much greater than Re. As the final
30、product forms, the initial high electrical conductivity is restored and, accordingly, U grows. Finally, the signal decreases, because of cooling of the cell.</p><p> It is obvious that for detailed interpre
31、tation of such oscilloscope traces, one must supplement the experimental results by a mathematical simulation of the registered electrophysical processes. In a general formulation even for the plane variant, this is an i
32、nvolved problem, in which one must solve nonstationary heatconduction equations with varying parameters, choose kinetic dependences describing the chemical interaction, take into account the change in the electrical prop
33、erties of the sample</p><p> REFERENCES</p><p> 1. G. A. Adadurov, T. V. Bavina, O. N. Breusov, et al., "On the relationship between the state of</p><p> material under dyna
34、mic compression and results of studies of recovered samples," in: Combustion and Ezplosion: Proc. of the 3rd USSR Symp. on Combustion and Explosion [in Russian], Nauka, Moscow (1972), pp. 523-528.</p><p&g
35、t; 2. S. S. Nabatov, G. E. Ivanchikhina, A. V. Kolesnikov, et al., "Shock-wave synthesis of tin monosulfide," Khim. Fiz., 14, Nos. 2 and 3, 40-48 (1995).</p><p> 3. S. S. Nabatov, S. O. Shubitidz
36、e, and V. V. Yakushev, "Use of the thermal EMF phenomenon in</p><p> semiconductors to study exothermal processes in a recovery capsule," Fiz. Goreniya Vzryva, 26,</p><p> No. 6, 114
37、-116 (1990)</p><p> 4. A. V. Lebedev, S. S. Nabatov, and T. A. Alekseenko, "A measuring complex based on an F4226 analog-to-digital converter and its use for recording of electrical parameters in shock
38、-wave recovery experiments," in: Detonation: Materials of the 9th USSR Symp. on Combustion and Explosion [in Russian], Chernogolovka (1989), pp. 94-96.</p><p> 5. S. S. Nabatov and A. V. Lebedev, "
39、;Thermoelectric signMs in shock-wave compression of a</p><p> semiconducting sample in a flat recovery capsule," Khim. Fiz., 12, No. 2, 167-169 (1993).</p><p> 6. A. V. Lebedev, A. V. Kul
40、'bachevskii, and S. S. Nabatov, "On measurements of electrical conductivity of semiconductors in shock-wave recovery experiments," Khim. Fiz., 13, No. 12, 128-130 (1994).</p><p> 7. R. A. Krek
41、tuleva and T. M. Platova, "Simulation of the behavior of multicomponent materials in a shock wave," in: Detonation: Materials of the 2nd USSR Symp. on Detonation [in Russian], No. 2, Chernogolovka (1981), pp. 9
42、8-101.</p><p> 8. W. J. Kolkert, "Calculation of the shock temperature of porous and on-porous high explosives," Propellants and Explosives, No. 4, 71-72 (1979).</p><p> 9.S. S. Bat
43、sanov, M. F. Gogulya, M. A. Brazhnikov, et al., "Behavior of the Sn+S reacting system in shock waves," Fiz. Goreniya Vzryva, 30, No. 3, 107-112 (1994).</p><p> 10.V. F. Anisichkin, "On the ca
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----在放熱過(guò)程中對(duì)半導(dǎo)體熱電偶測(cè)量數(shù)據(jù)進(jìn)行數(shù)值分析
- 【資料】文獻(xiàn)中英文--熱電偶測(cè)量
- 鎧裝熱電偶
- 熱電偶相關(guān)介紹
- 淺談熱電偶在火電中的使用
- 熱電偶測(cè)溫原理及其應(yīng)用
- 熱電偶測(cè)溫原理及其應(yīng)用
- 淺析熱電偶選型與維護(hù)
- 熱電偶檢定常見(jiàn)問(wèn)題分析
- 常用熱電偶、熱電阻保護(hù)管及選用
- 熱電偶自動(dòng)檢定系統(tǒng).pdf
- 熱電偶熱電阻技術(shù)規(guī)范書(shū)
- 熱電偶與熱電阻的區(qū)別2011
- 基于熱電偶的控溫器設(shè)計(jì).pdf
- 熱電偶法在溫升試驗(yàn)中的運(yùn)用
- 熱電偶在工業(yè)生產(chǎn)中的應(yīng)用
- 熱電偶原理和常見(jiàn)故障
- 熱電偶溫度計(jì)的課程設(shè)計(jì)--熱電偶溫度計(jì)的設(shè)計(jì)與制作
- 熱電偶熱電阻解析圖 裝配方式
- 實(shí)驗(yàn)三 熱電偶高溫氣體溫度的測(cè)量
評(píng)論
0/150
提交評(píng)論