版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Integrated circuit</p><p> In electronics, an integrated circuit (also known as IC, microcircuit, microchip, silicon chip, or chip) is a miniaturized electronic circuit (consisting mainly of semi
2、conductor devices, as well as passive components) that has been manufactured in the surface of a thin substrate of semiconductor material. Integrated circuits are used in almost all electronic equipment in use today and
3、have revolutionized the world of electronics.</p><p> Integrated circuits were made possible by experimental discoveries which showed that semiconductor devices could perform the functions of vacuum tubes,
4、and by mid-20th-century technology advancements in semiconductor device fabrication. The integration of large numbers of tiny transistors into a small chip was an enormous improvement over the manual assembly of circuits
5、 using electronic components. The integrated circuit's mass production capability, reliability, and building-block approach to c</p><p> There are two main advantages of ICs over discrete circuits: cost
6、 and performance. Cost is low because the chips, with all their components, are printed as a unit by photolithography and not constructed one transistor at a time. Furthermore, much less material is used to construct a c
7、ircuit as a packaged IC die than as a discrete circuit. Performance is high since the components switch quickly and consume little power (compared to their discrete counterparts) because the components are small and</
8、p><p> Among the most advanced integrated circuits are the microprocessors or "cores", which control everything from computers to cellular phones to digital microwave ovens. Digital memory chips and
9、ASICs are examples of other families of integrated circuits that are important to the modern information society. While the cost of designing and developing a complex integrated circuit is quite high, when spread across
10、typically millions of production units the individual IC cost is minimized. The performa</p><p> ICs have consistently migrated to smaller feature sizes over the years, allowing more circuitry to be packed
11、on each chip. This increased capacity per unit area can be used to decrease cost and/or increase functionality—see Moore's law which, in its modern interpretation, states that the number of transistors in an integrat
12、ed circuit doubles every two years. In general, as the feature size shrinks, almost everything improves—the cost per unit and the switching power consumption go down, and the </p><p> Only a half century af
13、ter their development was initiated, integrated circuits have become ubiquitous. Computers, cellular phones, and other digital appliances are now inextricable parts of the structure of modern societies. That is, modern c
14、omputing, communications, manufacturing and transport systems, including the Internet, all depend on the existence of integrated circuits.</p><p> Integrated circuits can be classified into analog, digital
15、and mixed signal (both analog and digital on the same chip).</p><p> Digital integrated circuits can contain anything from one to millions of logic gates, flip-flops, multiplexers, and other circuits in a f
16、ew square millimeters. The small size of these circuits allows high speed, low power dissipation, </p><p> and reduced manufacturing cost compared with board-level integration. These digital ICs, typically
17、microprocessors, DSPs, and micro controllers work using binary mathematics to process "one" and "zero" signals.</p><p> Analog ICs, such as sensors, power management circuits, and operat
18、ional amplifiers, work by processing continuous signals. They perform functions like amplification, active filtering, demodulation, mixing, etc. ICs can also combine analog and digital circuits on a single chip to create
19、 functions such as A/D converters and D/A converters. Such circuits offer smaller size and lower cost, but must carefully account for signal interference.</p><p> The semiconductors of the periodic table of
20、 the chemical elements were identified as the most likely materials for a solid state vacuum tube by researchers like William Shockley at Bell Laboratories starting in the 1930s. Starting with copper oxide, proceeding to
21、 germanium, then silicon, the materials were systematically studied in the 1940s and 1950s. Today, silicon monocrystals are the main substrate used for integrated circuits (ICs) although some III-V compounds of the perio
22、dic table such as</p><p> Semiconductor ICs are fabricated in a layer process which includes these key process steps:</p><p><b> Imaging </b></p><p> Deposition </
23、p><p><b> Etching </b></p><p> The main process steps are supplemented by doping and cleaning.</p><p> Integrated circuits are composed of many overlapping layers, each
24、defined by photolithography, and normally shown in different colors. Some layers mark where various dopants are diffused into the substrate (called diffusion layers), some define where additional ions are implanted (impl
25、ant layers), some define the conductors (polysilicon or metal layers), and some define the connections between the conducting layers (via or contact layers). All components are constructed from a specific combinati</p
26、><p> In a self-aligned CMOS process, a transistor is formed wherever the gate layer (polysilicon or metal) crosses a diffusion layer. </p><p> Since a CMOS device only draws current on the trans
27、ition between logic states, CMOS devices consume much less current than bipolar devices.</p><p> A random access memory is the most regular type of integrated circuit; the highest density devices are thus m
28、emories; but even a microprocessor will have memory on the chip. Although the structures are intricate – with widths which have been shrinking for decades – the layers remain much thinner than the device widths. The laye
29、rs of material are fabricated much like a photographic process, although light waves in the visible spectrum cannot be used to "expose" a layer of material, as they would </p><p> The earliest int
30、egrated circuits were packaged in ceramic flat packs, which continued to be used by the military for their reliability and small size for many years. Commercial circuit packaging quickly moved to the dual in-line package
31、 (DIP), first in ceramic and later in plastic. In the 1980s pin counts of VLSI circuits exceeded the practical limit for DIP packaging, leading to pin grid array (PGA) and leadless chip carrier (LCC) packages. Surface mo
32、unt packaging appeared in the early 1980s an</p><p> In the late 1990s, PQFP and TSOP packages became the most common for high pin count devices, though PGA packages are still often used for high-end microp
33、rocessors. Intel and AMD are currently transitioning from PGA packages on high-end microprocessors to land grid array (LGA) packages.</p><p> Ball grid array (BGA) packages have existed since the 1970s. Fli
34、p-chip Ball Grid Array packages, which allow for much higher pin count than other package types, were developed in the 1990s. </p><p> Most integrated circuits large enough to include identifying informatio
35、n include four common sections: the manufacturer's name or logo, the part number, a part production batch number and/or serial number, and a four-digit code that identifies when the chip was manufactured. Extremely s
36、mall surface mount technology parts often bear only a number used in a manufacturer's lookup table to find the chip characteristics.</p><p> The manufacturing date is commonly represented as a two-digi
37、t year followed by a two-digit week code, such that a part bearing the code 8341 was manufactured in week 41 of 1983, or approximately in October 1983.</p><p> Structure and function of the MCS-51 series<
38、;/p><p> Structure and function of the MCS-51 series one-chip computer is a name of a piece of one-chip computer series which Intel Company produces. This company introduced 8 top-grade one-chip computers of M
39、CS-51 series in 1980 after introducing 8 one-chip computers of MCS-48 series in 1976. It belong to a lot of kinds this line of one-chip computer the chips have,such as 8051, 8031, 8751, 80C51BH, 80C31BH,etc., their basic
40、 composition, basic performance and instruction system are all the same. 8051 da</p><p> An one-chip computer system is made up of several following parts: ( 1) One microprocessor of 8 (CPU). ( 2) At slice
41、data memory RAM (128B/256B),it use not depositting not can reading /data that write, such as result not middle of operation, final result and data wanted to show, etc. ( 3) Procedure memory ROM/EPROM (4KB/8KB ), is used
42、to preserve the procedure , some initial data and form in slice. But does not take ROM/EPROM within some one-chip computers, such as 8031 , 8032, 80C ,etc.. ( 4) F</p><p><b> 譯文:</b></p>
43、<p><b> 集成電路</b></p><p> 在電子學(xué)中,集成電路(亦稱為IC,微型電路,微型芯片等),是一種制造于半導(dǎo)體材料薄膜襯底表面的小型化電路(主要包括半導(dǎo)體設(shè)備和無(wú)源器件)。集成電路普遍應(yīng)用于當(dāng)今的電子設(shè)備中,徹底改變了電子世界。</p><p> 實(shí)驗(yàn)表明半導(dǎo)體器件可以實(shí)現(xiàn)真空管的功能。20世紀(jì)中期半導(dǎo)體制造技術(shù)的進(jìn)步,使得集成電路
44、成為可能。相對(duì)于手工組裝電路使用分立的電子元器件,集成電路把大量的微晶體管集成到一個(gè)小芯片,是一個(gè)巨大的進(jìn)步。集成電路的大規(guī)模生產(chǎn)性,可靠性和模塊化,使得應(yīng)用標(biāo)準(zhǔn)化IC的電路設(shè)計(jì)迅速取代了使用離散晶體管的電路設(shè)計(jì)。</p><p> 集成電路相對(duì)于離散晶體管有兩個(gè)主要的優(yōu)勢(shì):成本和性能。成本低是由于芯片把所有的元件通過照相平版技術(shù),作為一個(gè)單位印刷,而不是在一個(gè)時(shí)間只制作一個(gè)晶體管。此外,實(shí)現(xiàn)同樣的功能,集成電
45、路使用的電子材料比分立式的要少得多。性能高是由于元件快速開關(guān),消耗更低能量(相對(duì)于分立式元器件),因?yàn)樵苄∏冶舜丝康煤芙?006年,芯片面積從幾平方毫米到約350 mm²,每mm²可以集成達(dá)到一百萬(wàn)個(gè)晶體管。</p><p> 最先進(jìn)的集成電路是微處理器或稱核,它用于控制大到電腦小到手機(jī)或數(shù)字微波爐等。數(shù)字存儲(chǔ)芯片和ASIC是其它系列集成電路家族的例子,它們對(duì)于現(xiàn)代信息社會(huì)非常重要。雖
46、然單獨(dú)設(shè)計(jì)開發(fā)一個(gè)復(fù)雜的集成電路的成本非常高,但當(dāng)分散到數(shù)以百萬(wàn)計(jì)的產(chǎn)品上,每個(gè)IC的成本就很小了。IC的性能很高,因?yàn)槲⑿≡?lái)很短的線路,使得低功率邏輯電路(如CMOS電路)可以應(yīng)用于高速開關(guān)。</p><p> 近些年來(lái),IC的尺寸不斷微型化,使得單個(gè)芯片可以封裝更多的電路。這樣可以增加每單位面積上元器件得的數(shù)量,降低了成本和增加了功能。由摩爾定律的現(xiàn)代釋義可知,集成電路中的晶體管數(shù)量,每?jī)赡暝黾右槐丁?/p>
47、總之,隨著外形尺寸縮小,幾乎所有的性能指標(biāo)都得到了改善——單位成本和開關(guān)功耗下降了,運(yùn)行速度提高了。但是,納米級(jí)的IC并非沒有問題,其中最主要的問題是泄漏電流(參見亞閾值泄漏)。雖然這個(gè)問題不能完全克服,但至少可以通過引入高阻抗的電導(dǎo)來(lái)改善其性能。由于用戶對(duì)IC的運(yùn)行速度和功率消耗非常敏感,各生產(chǎn)商在如何開發(fā)運(yùn)用更好的技術(shù)上存在著激烈的競(jìng)爭(zhēng)。這個(gè)過程以及在未來(lái)幾年可能取得的進(jìn)步,在國(guó)際半導(dǎo)體技術(shù)藍(lán)圖(ITRS)中有很好的描述。</
48、p><p> 僅在其發(fā)明后的半個(gè)世紀(jì),集成電路變得無(wú)處不在。電腦,手機(jī)和其他數(shù)碼產(chǎn)品成為現(xiàn)代社會(huì)不可缺少的一部分?,F(xiàn)代計(jì)算,通信,制造和交通系統(tǒng),包括互聯(lián)網(wǎng),全都依賴于集成電路的存在。</p><p> IC可分為模擬IC,數(shù)字IC和數(shù)?;旌螴C(同一塊IC上既有模擬電路也有數(shù)字電路)。</p><p> 數(shù)字IC在幾平方毫米上可以集成上百萬(wàn)個(gè)邏輯門,多諧振蕩器,
49、多路復(fù)用器和其它電路。微型化的電路使得IC較板級(jí)電路運(yùn)行速度更快,耗能更小,生產(chǎn)成本更低。</p><p> 這些數(shù)字IC, 以微處理器,數(shù)字信號(hào)處理器(DSP)和微控制器為代表,工作中使用二進(jìn)制,處理1和0信號(hào)。模擬IC,例如傳感器,電源控制電路和運(yùn)放,用于處理連續(xù)的模擬信號(hào),可以完成放大,濾波,解調(diào),混頻等功能。</p><p> IC中也可以集成模擬電路和數(shù)字電路,實(shí)現(xiàn)如數(shù)/模轉(zhuǎn)
50、換(D/A)或模/數(shù)轉(zhuǎn)換(A/D)的功能。這種電路的尺寸更小,成本更低,但必須注意信號(hào)干擾。</p><p> 19世紀(jì)30年代始,研究者如貝爾實(shí)驗(yàn)室的William Shockley通過研究,認(rèn)為在化學(xué)元素周期表中的半導(dǎo)體硅元素是構(gòu)成固態(tài)真空管最可能的原料。從氧化銅到鍺,再到硅,原料在19世紀(jì)40年代到50年代被系統(tǒng)的研究。今天,盡管元素周期表中的一些III-V價(jià)化合物如砷化鎵有特殊用途,如應(yīng)用于發(fā)光二極管,
51、激光,太陽(yáng)能電池和超高速集成電路,但單晶硅仍是集成電路的主流基層。人們花了數(shù)十年的時(shí)間來(lái)完善在半導(dǎo)體材料的晶體結(jié)構(gòu)中創(chuàng)造無(wú)缺陷晶體的方法。</p><p> 半導(dǎo)體IC是逐層制造的,其構(gòu)造工藝過程包括以下關(guān)鍵步驟:成像,沉積,蝕刻,</p><p> 在其構(gòu)造過程輔以摻雜及清潔。</p><p> IC 由很多重疊的層組成,每層由影像技術(shù)定義,通常用不同的顏色
52、表示。有些層標(biāo)記出不同的摻雜劑在基板上的分布(稱為擴(kuò)散層),有些層定義哪里有額外的離子注入(稱為灌輸層),有些層定義導(dǎo)體的特性(多晶硅層或金屬層),有些層定義傳導(dǎo)層之間的連接(過孔層或連接層)。所有的IC元件皆由這些層的特定組合構(gòu)成。</p><p> 在制造一個(gè)自排列CMOS的過程中,門層(多晶硅或金屬)穿過擴(kuò)散層形成晶體管。</p><p> 因?yàn)镃MOS器件只引導(dǎo)電流在邏輯門之間
53、轉(zhuǎn)換,因而CMOS器件比雙級(jí)元件消耗的電流少很多。隨機(jī)存取存儲(chǔ)器(random access memory)是最常見的集成電路,所以密度最高的設(shè)備是存儲(chǔ)器,即使是微處理器上也有集成存儲(chǔ)器。盡管存儲(chǔ)器結(jié)構(gòu)非常復(fù)雜——幾十年來(lái),芯片的寬度一直在減少,但芯片的層依然比其寬度薄得多。其層的制作過程非常象照相過程,雖然可見光譜中的光波不能用來(lái)曝光元件層,因?yàn)樗麄兲罅?。因而采用高頻光子(通常是紫外線)來(lái)創(chuàng)造層的圖案。因?yàn)槊總€(gè)特征都非常小,所以對(duì)于
54、一個(gè)正在調(diào)試制造過程的過程工程師來(lái)說(shuō),電子顯微鏡是必要的工具。</p><p> 最早的集成電路使用陶瓷扁平封裝,這種封裝由于其可靠性高和尺寸小,軍方多年來(lái)一直使用。商用電路封裝很快就發(fā)展到雙列直插式封裝(dual in-line package DIP),開始是陶瓷,之后是塑料。20世紀(jì)80年代,VLSI電路的針腳超過了DIP封裝的應(yīng)用限制,導(dǎo)致插針網(wǎng)格陣列和leadless chip carrier(LCC
55、)的出現(xiàn)。貼片式的封裝在20世紀(jì)80年代初期出現(xiàn),在80年代后期開始流行。貼片式使用更小的腳間距,引腳形狀為海鷗翼型或J型。以Small-Outline Integrated Circuit(SOIC)為例,貼片式占用面積比DIP少30-50%,厚度少70%。這種封裝在兩個(gè)長(zhǎng)邊有海鷗翼型引腳突出,引腳間距為0.05英寸。</p><p> 90年代后期,PQFP和TSOP封裝成為高引腳數(shù)器件最普遍的封裝形式,盡
56、管PGA封裝仍常用于高端微處理器。英特爾和AMD目前正把高端微處理器從PGA封裝過渡到(LGA)封裝。 球柵陣列(BGA)封裝出現(xiàn)于20世紀(jì)70年代。倒裝芯片球柵陣列封裝(FCBGA)始發(fā)展于20世紀(jì)90年代,這種封裝形式允許更高的引腳數(shù)。</p><p> 大多數(shù)集成電路都足夠大以包含識(shí)別信息,一般包括四個(gè)部分:制造商的名稱或標(biāo)志,零件編號(hào),生產(chǎn)批號(hào)和/或序列號(hào)以及標(biāo)識(shí)芯片制造日期的4位數(shù)字代碼。面積
57、極小的貼片式封裝芯片往往需要用該芯片上的一個(gè)數(shù)字到生產(chǎn)商的列表中查找該芯片的特點(diǎn)。 芯片制造日期通常表示為兩位數(shù)的年份加兩位數(shù)字的星期代碼。例如,芯片上的代碼8341表示該芯片生產(chǎn)于1983年的第41周,或著說(shuō)大約在1983年10月生產(chǎn)。</p><p> 51系列單片機(jī)的功能和結(jié)構(gòu):</p><p> MCS - 51系列單片機(jī)具有一個(gè)單芯片電腦的結(jié)構(gòu)和功能,它是英特爾公司生
58、產(chǎn)的系列產(chǎn)品的名稱。這家公司在1976年推出8位的MCS - 48系列單芯片計(jì)算機(jī)后,于1980年推出的8位的MCS - 51系列單芯片計(jì)算機(jī)。諸如此類的單芯片電腦有很多種,如8051,8031,8751,80C51BH,80C31BH等,其基本組成,基本性能和指令系統(tǒng)都是相同的。 8051是51系列單芯片電腦的代表。 一個(gè)單芯片的計(jì)算機(jī)系統(tǒng)由以下幾個(gè)部分組成:(1)一個(gè)8位的微處理器(
59、CPU)。(2)片內(nèi)數(shù)據(jù)存儲(chǔ)器RAM(128B/256B),它只讀/寫數(shù)據(jù),如結(jié)果不在操作過程中,最終結(jié)果要顯示數(shù)據(jù)(3)程序存儲(chǔ)器ROM/ EPROM(4KB/8KB),是用來(lái)保存程序,一些初步的數(shù)據(jù)和切片的形式。但一些單芯片電腦沒有考慮ROM / EPROM,如8031,8032,80C51等等。(4)4個(gè)8路運(yùn)行的I / O接口,P0,P1,P2,P3,每口可以用作入口,也可以用作出口。 (5)兩個(gè)定時(shí)/計(jì)數(shù)器,每個(gè)定時(shí)/計(jì)數(shù)器可
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 集成電路外文翻譯
- 集成電路封裝測(cè)試廠電氣設(shè)計(jì)
- 電氣類畢業(yè)設(shè)計(jì)外文翻譯
- 集成電路試題庫(kù)資料
- 高位D類功放集成電路的設(shè)計(jì).pdf
- 電氣類畢業(yè)設(shè)計(jì)外文翻譯3
- 畢業(yè)設(shè)計(jì)英文資料翻譯.doc
- 數(shù)字集成電路課程設(shè)計(jì)報(bào)告——通訊集成電路
- 集成電路課程設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)--集成電路塑封自動(dòng)上料機(jī)機(jī)架部件設(shè)計(jì)及性能試驗(yàn) (含全套資料)
- 集成電路課程設(shè)計(jì)
- 集成電路反向設(shè)計(jì)實(shí)驗(yàn)
- 集成電路布圖設(shè)計(jì)
- 集成電路代換
- 畢業(yè)設(shè)計(jì)--集成電路塑封自動(dòng)上料機(jī)機(jī)架部件設(shè)計(jì)及性能試驗(yàn) (含全套資料).doc
- 集成電路概述
- 集成電路課程設(shè)計(jì)_new
- 集成電路應(yīng)用系統(tǒng)設(shè)計(jì)實(shí)踐
- 集成電路布圖設(shè)計(jì)登記
- 放棄集成電路步圖設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論