版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 外文文獻(xiàn)原文</b></p><p> Limited torque input Robust Adaptive Tracking Control of Robot</p><p><b> Abstract</b></p><p> Based on input constraints
2、, a novel robust-adaptive tracking control algorithm is proposed for robot manipulators since stability if the standard adaptive control system is problematic when some disturbance exists. The proposed controller stabili
3、zes the system with some disturbance and guarantees asymptotic stability in the case if non-disturbance. Robust-adaptive algorithm can be received as the extension of the conventional adaptive scheme. The estimated param
4、eters enter the controller non-lin</p><p> Keywords: Adaptive control; robot manipulator; parametric uncertainties; robust-adaptive;</p><p> So far, almost all of the controller design is base
5、d on joint drive to produce any torque on the basis of; and is subject to the physical conditions, the output of the drive torque is limited, so the controller may lead to the control failure or deterioration of the qual
6、ity control.Therefore the controller design must take into account the limited joint drive dynamic capability. For example, the operation of the industry to help the robot, some parameters are uncertain or unknown,
7、adaptive </p><p> MANIPULATOR DYNAMIC MODEL</p><p> AND CHARACTERISTIC MODEL</p><p> Consider a robotic manipulator with n degrees of freedom. The continuous Lagrange dynamic mod
8、el is given by</p><p> Where q∈R n and ∈R n are the vector of generalized joint coordinates and velocity coordinates, respectively. The inertia matrix M(q)-MT(q)> 0 ,and there exist two constant positiv
9、e scalars M min and M max such that ≤ ≤, is the vector of commanded generalized force, and and G(q) are the terms due to Carioles, Centripetal and gravity forces. In actual application, the uncertain parameters and un-m
10、odeled dynamics usually exist in the established dynamic model in (1).</p><p> When the sample time is small enough, at instant t=kq and can be approximated by</p><p><b> and .
11、</b></p><p> Respectively Using the above relationships the discrete-time representation of (1) becomes</p><p><b> (2a)</b></p><p> Premultiplying (2a) by resul
12、ts in </p><p><b> where</b></p><p><b> ,</b></p><p> and I denotes the unitary diagonal matrix with an appropriate dimension.</p><p> If the
13、 designed is continuous in t ,q and , then the solution (q,) of (1) will be continuously differentiable. Let and be ij-th element of matrix ; We define </p><p> and then ΔF1(k) can be expressed as</p&g
14、t;<p> For the ij-th element Δf1,ij(k) of matrix ΔF1(k)</p><p> we can get</p><p><b> = </b></p><p><b> = </b></p><p> with 0≤≤1,an
15、d,≈1 for a small sample time Ts . From (3), it can be seen that ΔF1(k)→0 as Ts converges to zero in a compact set of .Similar properties can also be achieved for the coefficient matrixes f2(k), and β (k) .</p><
16、;p> In a compact set of, the following properties can be deduced from (3) and the expressions of the coefficient matrixes of (2b):</p><p> Property 1: If the sample time Ts is small enough,then all coef
17、ficient matrixes of (2b) are slowly time varying;</p><p> Property 2: f1(k)→2I,f2(k)→ ?I and f1(k)+f2(k)→I, as the sample time Ts converges to zero. Then we can define the discrete equation (2b) with Prope
18、rties 1 and 2 as the robotic manipulator characteristic model.</p><p> MULTI-VARIABLE GSA CONTROLLER </p><p> WITH NN COMPENSATION</p><p> Discrete equation (2b) can be expressed
19、 as follows:</p><p><b> (4)</b></p><p><b> Where</b></p><p><b> ,</b></p><p><b> ,</b></p><p> e(k) de
20、notes the vector of white noise with zero mean. In the case of ≡0, and can be reduced to</p><p> Then the elements of q(k +1) can be expressed as </p><p><b> (5)</b></p>&
21、lt;p> where i = 1,…,n, (k+1)) is the element i of q(k +1), is the element i of e(k) and is the column i of the matrix </p><p><b> . </b></p><p> When the coefficient matrixes
22、are unknown, it can be estimated by</p><p> =π (q(k),q(k?1),...,u(k?1),...) , (6a)</p><p> where is the estimated coefficient matrix of Θ(k) at the instant t=kTs , and denotes an
23、 estimation operator. Considering the coefficient matrixes of the characteristic model being slowly time-varying, we can obtain the selected estimation operator by the weighted least squares method (WLS)[13], namely <
24、/p><p><b> ,</b></p><p> with λ(k+1)=μ0λ(k)+(1?μ0), 0<μ0 ≤1, and the column i of the matrix.</p><p> Given a desired smooth trajectory , the adaptive control contro
25、ller is designed as follows </p><p><b> (7)</b></p><p> with the feed forward control law designed as</p><p><b> (7a)</b></p><p> and the mu
26、lti-variable GSAC feedback law as</p><p><b> (7b)</b></p><p> where is the tracking error andε(k) >0 is a small scalar that avoids the estimated matrix being singular. The term
27、 of will be designed later; L1 and L2 are golden-section coefficients, that is,</p><p><b> , ,</b></p><p> which satisfy the relationship L1+L2=1 and </p><p> Sub
28、stituting (7) into (2), we can get</p><p><b> (8)</b></p><p> and .Defining the tracking filtered error s(k +1) as and using the relationships L1+L2=1 and , (8) can be expressed as
29、</p><p> = (9)</p><p><b> Which</b></p><p> Assuming , , and </p><p> ,if is selected as</p><p> then Δ(k) = 0 , and then (9) ca
30、n be written as</p><p><b> (10)</b></p><p> Since in Property 2 as Ts → 0 in a compact set of, a small sample time Ts can be selected such that the inequality can be satisfied. Th
31、erefore, the tracking filtered error s(k) asymptotically converges to zero in this case. The convergence of s(k) to zero in turn guarantees the convergence of q(k) to zero. Because of the dynamics of the estimator and th
32、e time-varying coefficients of the characteristic model, it is almost impossible to satisfy the above assumptions. Therefore, we can design a su</p><p><b> (11)</b></p><p> where
33、is the estimate of Δ(k) .</p><p> Assuming Δ(k) is smooth enough and bounded, it then can be approximated by the linearly parameterized NN to any required degree of accuracy [6,14]. Then the element Δi(k) o
34、f Δ(k) can be expressed as</p><p><b> (12)</b></p><p> where i= 1,…n, is the column i of the optimal NN weight matrix,.Activation functions</p><p> represent the bas
35、is function vector, which can be selected as any one of Gaussian radial basis, B-spine basis, Wavelet basis, and etc. [14], and δi (k) denotes the element I of the NN reconstruction error vectork δ(k), namely</p>
36、<p><b> .</b></p><p> Using compensation control law , (9) can be written as</p><p><b> (13)</b></p><p> Where is the estimate of , and </p>
37、<p> An estimate is now obtained by minimizing the cost function</p><p><b> (14)</b></p><p> After substituting (13) into (14), the gradient of the cost function in (14) is
38、 derived as</p><p><b> (15)</b></p><p> According to the gradient descent method the NN weight adaptation law can be designed as</p><p><b> (16)</b></p
39、><p> with α > 0 . Then the compensation control law in (11) can be written as</p><p><b> (17)</b></p><p> In view of the case the term can be simplified as</p&
40、gt;<p> 4. SIMULATION RESULTS</p><p> Consider a planar, two-link, articulated manipulator as in [3] (as presented in Fig. 1), whose dynamics can be written explicitly as</p><p><b&g
41、t; Where</b></p><p><b> With,</b></p><p><b> ,,</b></p><p><b> and .</b></p><p> In the simulation, the sample time Ts =
42、2ms, the initial values and the parameters of the estimator and the controller are selected as P(0) =1×I,λ(0) = 0.96 , μ0 = 0.98 , the anti-singularity factors (k) can be designed as ε(k) =5×exp(?kTs).</p>
43、;<p> According to the Property 2, the initial estimate values of the characteristic model coefficient matrixes are chosen as </p><p> A basis set of activation function y(k) can be selected as in t
44、he Random Vector Function Link net [16], namely,</p><p><b> (19)</b></p><p> with V a randomly selected matrix and X(k) the NN input vector. can be chosen as the hyperbolic tangen
45、t function, and X(k) can be taken as</p><p><b> ?? .</b></p><p> The adaptation gain for the NN weight tuning is taken as α = 0.005 , and the initial values of the weights are set
46、to zeros.</p><p> The desired trajectory is chosen as</p><p><b> (20)</b></p><p><b> 外文翻譯</b></p><p> 輸入力矩受限的機器人魯棒自適應(yīng)控制</p><p>
47、<b> 摘要</b></p><p> 在輸入力矩受限的情況下,提出一種全的簡單魯棒自適應(yīng)控制算法。當(dāng)參數(shù)的估計范圍包含其真實值時,證明了閉環(huán)系統(tǒng)的漸進(jìn)穩(wěn)定跟蹤;當(dāng)有干擾存在,常規(guī)參數(shù)估計自適應(yīng)控制算法不能實現(xiàn)穩(wěn)定控制時,本算法仍然使系統(tǒng)穩(wěn)定。在本算法中,所估計的參數(shù)在跟蹤控制前饋項中表現(xiàn)為非線性,這是區(qū)別于常規(guī)參數(shù)估計自適應(yīng)算法的一個最重要特征。因此本算法控制器的設(shè)計更有靈活性,另一
48、方面獲得更好的控制品質(zhì)和魯棒性,特別是對參數(shù)估計域軌跡誤差即參數(shù)估計崔無的強魯棒性,均為仿真算例所驗證。</p><p> 關(guān)鍵詞:自適應(yīng)控制;自適應(yīng)系統(tǒng);機器人;魯棒自適應(yīng)控制;輸入力矩受限 </p><p><b> 1 前言</b></p><p> 迄今為止,幾乎所有控制器設(shè)計都建立在關(guān)節(jié)驅(qū)動器能產(chǎn)生任意力矩的基礎(chǔ)上;而實際上受物
49、理條件限制,驅(qū)動器的輸出力矩是有限的,這樣的控制器可能導(dǎo)致控制失敗或控制品質(zhì)的惡化。因此控制器的設(shè)計必須考慮到關(guān)節(jié)驅(qū)動器的有限動能力。</p><p> 對于例如幫運作業(yè)的機器人,有些參數(shù)是不確定或者不可知的,基于估計參數(shù)自適應(yīng)控制是處理此類問題的主要控制策略之一,利用機器人動力學(xué)方程的線性參數(shù)化性質(zhì),通過一個積分運算估計機器人參數(shù)。由于積分環(huán)節(jié)的作用,在持續(xù)干擾條件下,控制系統(tǒng)不容易穩(wěn)定,因此適當(dāng)限制或調(diào)整積
50、分環(huán)節(jié)的作用是實現(xiàn)自適應(yīng)系統(tǒng)穩(wěn)定的一個有效手段。能把估計參數(shù)限制子啊所規(guī)定的范圍內(nèi),從而提高了自適應(yīng)控制系統(tǒng)的魯棒性。但這種算法有六個開關(guān)組成,稍微復(fù)雜,而且當(dāng)真是參數(shù)不在所規(guī)定的范圍內(nèi)時,它不能給出系統(tǒng)控制品質(zhì)及其魯棒性等信息。</p><p> 本文提出一種簡單的魯棒自適應(yīng)控制算法,當(dāng)估計參數(shù)域包含參數(shù)真實值時,閉環(huán)系統(tǒng)實現(xiàn)漸進(jìn)穩(wěn)定跟蹤;當(dāng)存在干擾或估計參數(shù)域不含參數(shù)真實值即有誤差時系統(tǒng)是穩(wěn)定的。</
51、p><p> 2.機械手的動態(tài)模型和特征模型</p><p> 考慮機械手與N自由度。連續(xù)拉格朗日動態(tài)模型[ 1-3 ]是由</p><p><b> (1)</b></p><p> 其中q ∈Rn和∈R n 分別為都N的矢量廣義的聯(lián)合坐標(biāo)和速度坐標(biāo)系。慣性矩陣M(q)-MT(q)> 0,存在兩個常數(shù)正面標(biāo)米
52、M的最小值和最大值,如≤≤,是載體的指揮廣義力,和G(q)是哥氏力矩和重力力矩。在實際應(yīng)用中,不確定參數(shù)和聯(lián)合國的動力學(xué)模型,通常存在于既定的動態(tài)模型</p><p> 當(dāng)樣品的時間是夠小,在即時可分別逼近</p><p><b> 和 .</b></p><p> 使用上述的關(guān)系,離散時間的代表性( 1 )成為</p>&
53、lt;p><b> (2a)</b></p><p><b> 把代入(2a)得 </b></p><p><b> (2b)</b></p><p><b> 其中</b></p><p><b> ,</b><
54、;/p><p> 同樣,I 指單一的對角矩陣與一個適當(dāng)?shù)膶用妫绻O(shè)計 (0.2)是連續(xù)的在T中,那么結(jié)果就是 (q, ) of (1).就要持續(xù)將 and 成為ij-th 要素矩陣 ; 我們可以界定</p><p> 然后 ΔF1(k) 可以表達(dá)為</p><p> 對于 ij-th 元素 的矩陣ΔF1(k)</p><p><
55、b> 我們可以得到</b></p><p><b> = </b></p><p> = </p><p> 當(dāng) 0≤≤1,and,≈1 對于一個小樣本的時間 Ts .從(3)得到, 它可以被看作為 ΔF1(k)→0 當(dāng)Ts 趨近于零在在一個緊湊的設(shè)置 中. 類似的性能也可以達(dá)到為系數(shù)
56、矩陣 f2(k), and β(k) .在一個緊湊的一套, 下列屬性可以推斷,從(3)和表達(dá)的系數(shù)矩陣(2b)條:</p><p> 所有物1: 如果樣品時間 Ts 足夠小,那么所有系數(shù)矩陣(2b)條的時間正在慢慢變;</p><p> 所有物2: f1(k)→2I,f2(k)→ ?I 和 f1(k)+f2(k)→I, 當(dāng)樣品時間Ts 趨近于零. 然后我們可以定于離散方程(2b)與性
57、能的第一和第二款作為機械手特征模型。</p><p> 3多變量GSA的控制器與神經(jīng)網(wǎng)絡(luò)補償</p><p> 離散方程(2b)條可表示為如下</p><p><b> (4)</b></p><p><b> 當(dāng)</b></p><p><b> ,&l
58、t;/b></p><p><b> ,</b></p><p> e(k)是指載體的白噪聲與零的意思. 在 ≡0, and 的情況下可以減少到</p><p> 然后元素 q(k +1) 可以表示為</p><p> (5) 當(dāng) i = 1,…,n, (k+1)) 是q(k +1)的元素i, ei(k)
59、 是o e(k)的元素i, 并且θi(k) 是矩陣中的圓柱</p><p><b> i . </b></p><p> 當(dāng)系數(shù)矩陣都是未知,可以估計為=π (q(k),q(k?1),...,u(k?1),...) , (6a)</p><p> 當(dāng) 是Θ(k)在當(dāng)時估計的系數(shù)矩陣 t=kTs , and
60、 意味著 操縱者的意愿。考慮到系數(shù)矩陣的特征模型的時間正在慢慢變,我們可以獲取選定的估計運營商的加權(quán)最小二乘法 (WLS)[13],</p><p><b> ,</b></p><p> 當(dāng) λ(k+1)=μ0λ(k)+(1?μ0), 0<μ0 ≤1, and matrix圓柱 i .鑒于預(yù)期的順利軌跡 , 自適應(yīng)控制控制器的設(shè)計如下 </p>
61、;<p> (7) 當(dāng)前饋控制律設(shè)計</p><p><b> (7a)</b></p><p> 并且和多變量gsac反饋法</p><p><b> (7b)</b></p><p> 當(dāng) 是跟蹤誤差,并且ε(k) >0 是是一個很小的標(biāo)量,避免估計矩陣 存在差異.
62、 在這個期間 將稍后設(shè)計; L1 和L2 是黃金分割系數(shù), 這就是:</p><p><b> , ,</b></p><p> 并將滿足L1+L2=1 和 </p><p> 從而取代 (7) 進(jìn)入 (2), 我們可以得到</p><p> 和 . 確定跟蹤過濾錯誤 s(k +1) 并且運用其中的關(guān)心L1
63、+L2=1 和 , (8) 將被表達(dá)為</p><p><b> =</b></p><p><b> 當(dāng)</b></p><p><b> 假設(shè), , 和</b></p><p><b> ,if 被選定為</b></p><
64、;p> 然后 Δ(k) = 0,再(9) 可以被寫作</p><p><b> (10)</b></p><p> 當(dāng)在所有物2 as Ts → 0 在一個緊湊的設(shè)置, 在一個小樣本時間Ts 中可以選擇不平等可以得到滿足。故在跟蹤過濾錯誤 s(k) 在這種情況下趨近與零.收斂性的 S(k)至零,從而保證了收斂的Q(k)至零。由于動態(tài)的估計和隨時間變化
65、的系數(shù)特征模型、它幾乎是不可能的,以滿足上述假設(shè)。</p><p> 因此,我們可以設(shè)計一個適當(dāng)?shù)难a償控制法,以避免可能的情況出現(xiàn),控制性能惡化,或該閉環(huán)系統(tǒng)是不穩(wěn)定的,甚至因估計錯誤。因此,設(shè)計為</p><p> (11) 當(dāng) 是 Δ(k)的估計值 .</p><p> 假設(shè)Δ(k)能夠的順利進(jìn)行和范圍內(nèi),這樣它就能被近似線性參數(shù)神經(jīng)網(wǎng)絡(luò)的任何所需的準(zhǔn)確度
66、。</p><p> 然后元素Δi(k) of Δ(k) 可以表達(dá)為</p><p> (12) 當(dāng) i= 1,…n, is 是圓柱體i的最優(yōu)神經(jīng)網(wǎng)絡(luò)的權(quán)重矩陣,,.激活功能代表基函數(shù)向量,它可以選擇任何一高斯徑向基,B樣條的基礎(chǔ)和小波巴斯等等。</p><p> [14], 并且δi (k) 表示 元素 i 在神經(jīng)網(wǎng)絡(luò)誤重建差量 k δ(k)</
67、p><p><b> .</b></p><p> 使用補償控制定理 , (9) 可以被寫成為</p><p><b> (13)</b></p><p> 在 是 的判斷, 并且 </p><p> 對 的估計已經(jīng) 通過最小化成本函數(shù)得到了</p>&
68、lt;p><b> (14)</b></p><p> 把(13)代入(14)之后,梯度成本函數(shù)在(14)導(dǎo)出</p><p><b> (15)</b></p><p> 根據(jù)該梯度下降法神經(jīng)網(wǎng)絡(luò)的重量適應(yīng)的定理可以設(shè)計為</p><p><b> (16)</b&
69、gt;</p><p> 當(dāng) α > 0,那么補償控制定理在(11)可以被寫成為</p><p><b> (17)</b></p><p> 鑒于這個例子 之時 可以簡化為</p><p><b> 4.仿真結(jié)果</b></p><p> 考慮一個平面,兩
70、個環(huán)節(jié),闡述了機械手的作為,在(3)(如圖一介紹), 其動態(tài)可以書面明確為</p><p><b> 當(dāng)</b></p><p><b> 其中</b></p><p><b> ,</b></p><p><b> ,,</b></p>
71、;<p><b> and .</b></p><p> 在模擬設(shè)計中,樣本時間 Ts = 2ms,初始值和參數(shù)估計和控制器的選定為P(0) =1×I,λ(0) = 0.96 , μ0 = 0.98 , </p><p> 反奇異因素ε(k) 可以被描述為 ε(k) =5×exp(?kTs).</p><p
72、> 根據(jù)所有物2, 初步估計值的特征模型的系數(shù)矩陣選擇</p><p> 一個基礎(chǔ)的一系列激活函數(shù)y ( k )項可以選擇,因為在隨機向量函數(shù)的聯(lián)系網(wǎng), [ 16 ] ,即 </p><p><b> (19)</b></p><p> 與V隨機選取矩陣和和X(k) t神經(jīng)網(wǎng)絡(luò)的輸入向量。可以被選擇為雙曲正切函數(shù)X(k) 可作為&
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 不確定機器人系統(tǒng)魯棒自適應(yīng)控制.pdf
- 力矩受限不確定機器人系統(tǒng)的魯棒性分析與設(shè)計.pdf
- 多機器人系統(tǒng)的魯棒自適應(yīng)協(xié)調(diào)控制.pdf
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制
- 機械設(shè)計,外文翻譯,自動化機器人規(guī)劃
- 自動化專業(yè)畢業(yè)設(shè)計外文翻譯5
- 自動化專業(yè)畢業(yè)設(shè)計外文翻譯1
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(英文)
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(譯文)
- 自動化專業(yè)畢業(yè)設(shè)計外文翻譯--語音控制器
- 機器人畢業(yè)設(shè)計--外文翻譯
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(譯文).doc
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(英文).pdf
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(譯文).doc
- 氣動肌肉外文翻譯--氣動肌肉驅(qū)動并聯(lián)機器人的自適應(yīng)性魯棒姿態(tài)控制(英文).pdf
- 力矩受限的機器人組合非線性反饋控制.pdf
- [機械模具數(shù)控自動化專業(yè)畢業(yè)設(shè)計外文文獻(xiàn)及翻譯]【期刊】有效控制的移動作業(yè)機器人系統(tǒng)-外文文獻(xiàn)
- 工業(yè)機器人畢業(yè)設(shè)計外文翻譯
- 自動化專業(yè)畢業(yè)設(shè)計外文資料翻譯--catia v5 的自動化
評論
0/150
提交評論