外文翻譯--塔機靜剛度控制值及計算方法研究-_第1頁
已閱讀1頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  附錄</b></p><p><b>  英文原文</b></p><p>  Calculation method and control value of static stiffness of tower crane</p><p>  Lanfeng Yu*</p>&l

2、t;p>  Research Institute of Mechanical Engineering, Southwest JiaoTong University, Chengdu, Sichuan, 610031, P. R. China(Manuscript Received August 31, 2006; Revised November 30, 2007; Accepted December 13, 2007)</

3、p><p><b>  Abstract</b></p><p>  The static stiffness of tower cranes is studied by using the proposed formulations and finite element method in this paper. A reasonable control value b

4、ased on theoretical calculation and finite element method is obtained and verified via collected field data. The results by finite element method are compared with the collected field data and that by the proposed formul

5、a. Corresponding to theoretical formulations and field data, it is found that the results by finite element method are closer to</p><p>  Keywords: Tower crane; Static stiffness; Control value; Static displa

6、cement</p><p>  1. Introduction</p><p>  Sagirli, Bococlu and Omurlu (2003) realized the simulation of a rotary telescopic crane by utilizing an experimental actual system for geometrical and dy

7、namical parameters [1]. With the intention of comparing the real system and the model and of verifying the sufficiency of the model accuracy, various scenarios were defined corresponding to different loading and operatin

8、g conditions. Of the scenarios defined, impulse response, time response and static response are used to experimentally gather s</p><p>  For static stiffness of a tower crane, the requirements of GB 3811-198

9、3 “Design rules for cranes” and GB/T 13752-1992 “Design rules for tower cranes” of China are as follows. “Under the rated load, the horizontal static displacement of the tower crane body △x at the connection place with t

10、he jib (or at the place of rotary column with the jib) should be no larger than H/100. In which H is the vertical distance of the tower body of the rail-mounted tower crane from the jib connection place to the </p>

11、<p>  In this paper a special research on the static stiffness of tower cranes was carried out aimed at relieving the over-strict control on the static stiffness (△x H/100) in the rules above, so as to meet the r

12、equirement for revising GB/T 3811-1983 “Design rules for cranes”. </p><p>  The remainder of this paper is organized as follows. Section 2 gives the suggested control value of static stiffness of a tower cra

13、ne. Section 3 verifies the static stiffness control value. Theoretical calculation method of static displacement of the tower body corresponding to the static stiffness control value is provided in Section 4. Section 5 c

14、ompares various methods for calculation of static displacement with the actually measured values. A brief conclusion is given in Section 6.</p><p>  2. The suggested control value of static stiffnessof tower

15、 crane</p><p>  Because of the wide use of high-strength steel, it is not difficult to meet the structural strength and stability.Requirements on structural stiffness are becoming a dominant factor restricti

16、ng tower crane development of towards the lightweight. The revised control value of static stiffness of tower crane should not only meet requirements of the current product development, but also should be suitable for fu

17、ture development. Based on the actual situation in China to ensure tower crane quality, s</p><p>  Fig. 1. Schematic diagram of static displacement of the tower crane.</p><p>  On the basis of a

18、 large number of investigations and visits to tower crane manufacturers and users, Yu, Wang, Zheng, and Wang proposed the recommended the control value of the tower crane static stiffness and the corresponding inspection

19、 method, i.e., taking the hinge-connection point of the jib end under noload condition (at this moment there is an absolute backward displacement of the jib end hingeconnection point in relation to the theoretic centerli

20、ne of the non-deformed tower body as shown </p><p>  According to opinion of the experts of “Appraisal & evaluation meeting on special research project Revision of Rules on Crane Design,” Yu, Wang, Zheng

21、, and Wang recommended that the static stiffness control val ue is a proper limit value meeting the voice of the tower crane industry for revising and widening the △x limit value [12]. Moreover, this method is convenient

22、 for inspection. However, in order to be consistent with the coefficient value specified in international standard, it is recommen</p><p>  Widening the static stiffness control value (1.34H/ 100) of the tow

23、er crane can reduce the tower crane production cost, so that the tower crane can develop towards lightweight in favor of the technical progress of this industry.</p><p>  3. Verification of the static stiffn

24、ess controlvalue</p><p>  In order to make the revised static stiffness control value of the tower crane really reflect the current actual situation of the static stiffness, a special research group carried

25、out measurements of static stiffness of 20 types of representative tower cranes which are within the period of their lifespan (see Table 1). The measurement results have shown that if measured according to the current me

26、asurement method, only one type of tower crane (sequence no. 5) can meet the static stiffness contr</p><p>  It should be explained that all these 20 types of tower cranes are in excellent working condition.

27、</p><p>  Table 1. The actually measured static stiffness control value and the original control value of 20 types of tower cranes.</p><p>  4. Theoretical calculation method of static displacem

28、ent of the tower body corresponding to the static stiffness control value</p><p>  The static displacement calculation methods include the traditional mechanics method or finite element methods. The calculat

29、ion model of the traditional mechanics method can be divided into mechanics model of continuum pressed-bending member and lattice-type frame mechanics model. The first one is simple and practical, while the second one is

30、 more accurate but the calculation is more complicated.</p><p>  4.1 Theoretical model for continuum pressed-bending</p><p>  According to the mechanics model of continuum pressed-bending member

31、 shown in Fig. 2, it is possible to obtain the theoretical calculation value corresponding to the static displacement measurement value described in this paper. According to the measurement method described in this paper

32、, the bending moment caused by the self-load of the tower crane under no-load and loaded conditions can be balanced heoretically. Besides, the wind load and other horizontal loads are not considered during measur</p&g

33、t;<p><b>  (1)</b></p><p>  Finding the solution of the above equation, we can obtain a precise calculation method of static displacement of the crane body top point:</p><p>&

34、lt;b>  (2)</b></p><p><b>  Where</b></p><p><b>  (3)</b></p><p>  where N is all the vertical force above the hingeconnection point of the crane bod

35、y and the jib under the rated load (including the converted force of the crane body at this place; the conversion method is referred to in attachment G of GB/T 13752 – 1992).M is bending moment caused by the hoisting loa

36、d,M=QR (where Q is the rated hoisting load, and R is the working amplitude corresponding to Q).</p><p>  Fig. 2. Mechanical model of static displacement of the towercrane.</p><p>  The above equ

37、ation can be also converted as follows.From the Euler critical load of the pressed column,</p><p><b>  (4)</b></p><p>  For the cantilever pressed column:=2,</p><p>  th

38、erefore (5)</p><p>  Expand the triangle function sec u into power series</p><p><b>  (6)</b></p><p>  Then Eq. (2) can be simplified into</p>&l

39、t;p>  Defining the proximity value f as f1,</p><p><b>  (8)</b></p><p>  whereM is horizontal displacement of the connection place between the tower body and the jib caused by the

40、 bending moment M of the rated hoisting load to the centerline of the tower body</p><p><b>  (9)</b></p><p>  andis deflection amplification factor considering influence of axial for

41、ce.</p><p>  4.2 Finite element model</p><p>  Fig. 3. Finite element model of tower crane.</p><p>  It is possible for the tower crane to be modeled by the finite element method. T

42、he finite element model is based on a simplification of the geometry of the tower crane structure. As a numerical method, the result from the finite element method is also approximate. The model of the tower crane is bro

43、ken into many elements (as shown in Fig. 3). There are three types of elements in this model of tower crane: the beam, bar and beam-spar element. The bow pole is modeled by using beam element. The pau</p><p>

44、;  The material property and load condition is the same as the above section. The dimension of the tower crane is also identical with that in the above formulations.</p><p>  5. Comparison of various methods

45、 for calculation of static displacement with actually measured values</p><p>  To understand the error value between different calculation methods and the accurate measure, the results of analytical expressi

46、ons (2) and (8) are compared to the numerical results. Numerical analysis was carried out by software ANSYS. Meanwhile the compared experiment data is the static displacements of the first five types of the tower cranes.

47、</p><p>  Comparison of the obtained static displacement values of the three calculating methods f1, f2, f3 (calculation values of finite element methods) with the actually measured values is shown in Table

48、2.</p><p>  Table 2. Comparison of maximum static displacement of the tower body f1, f2, f3 and the actually measured values.</p><p>  It can be seen from Table 2 that the error of the static di

49、splacement calculation values obtained from pressure-bending column mechanics model of the actual body according to Eqs. (2) and (8) is less than 12%. However, the error of finite element methods calculation values is le

50、ss than 10%. The reason is that the pressure-bending column mechanics model of the continuum mainly considers the stiffness of the chord members and does not consider the web members and its arrangement. Meanwhile, the s

51、t</p><p>  the proximity calculation value f1 and the precise value f calculated under a similar mechanics model,while the error does not exceed 1%. Therefore, when calculating the maximum static displacemen

52、t of thetower body according to the mechanics model, it is reasonable to use Eq. (2) or Eq. (8).</p><p>  The calculation method of the maximum horizonta lstatic displacement value of the relative theoretic

53、centerline of the tower body in actual work is referred to [12]. Besides vertical load, it is necessary to consider the bending moment caused by the self-weight and the lifting load. The wind load is distributed along th

54、e tower body, because the wind force, changing amplitude and rotation plays the role of brake, and the rotating centrifugal force causes concentrated horizontal force on the end p</p><p>  6. Conclusions<

55、/p><p>  Based on the analysis of the static stiffness filed data collected from many tower cranes which are in good working condition, if the static stiffness control value is specified to be H/100 (as require

56、d in GB 3811-1983 “Design rules for cranes” and GB/T 13752–1992 “Design rules for tower cranes”) only 5% of the investigated tower cranes can meet this requirement. If the control value of 1.34H/100 as suggested in this

57、paper is used, 75% of the investigated tower cranes can meet this requirement. </p><p>  The simplified formula proposed in this paper and the Finite Element method are used to calculate the static stiffness

58、 of several types of tower cranes. The results show that the finite element method is more accurate. However, the simplified formulas in Eq. (2) or Eq. (8) provide a simpler and easier approach.Future work is necessary t

59、o study the dynamic response of tower cranes induced by different kinds of payloads, such as the job of Ju [13] and Chin [14].</p><p><b>  中文翻譯</b></p><p>  塔機靜剛度控制值及計算方法研究</p>

60、<p><b>  于蘭峰</b></p><p>  西南交通大學機械工程研究所,中國,四川,成都 610031</p><p>  【摘要】在本文中對塔式起重機靜剛度的研究通過運用被提出的公式法和有限元法。合理控制值是建立在理論計算和有限元方法在得到通過對現(xiàn)場數(shù)據(jù)的收集驗證的基礎上。用有限元法得到的結(jié)果和用提出的公式得到的結(jié)果分別與現(xiàn)場收集的數(shù)據(jù)進行

61、了比較。理論公式和現(xiàn)場數(shù)據(jù)相一致,發(fā)現(xiàn)通過有限元方法得到的結(jié)果更接近真實的數(shù)據(jù)。</p><p>  【關鍵詞】塔機;靜剛度;控制值;靜位移</p><p><b>  1.引言</b></p><p>  Sagirli,Bococlu和Omurlu(2003年)通過真實的試驗系統(tǒng)實現(xiàn)了對旋轉(zhuǎn)伸縮式起重機的幾何和動力學參數(shù)的模擬[1]。目的是

62、通過將規(guī)定了相應的不同的負載和操作條件的各種情況,與真實的系統(tǒng)和模型比較,核實是否有足夠的模擬精度。在規(guī)定的情況下,脈沖響應,響應時間和靜態(tài)響應在實驗中被用來收集系統(tǒng)參數(shù)和變量,如阻尼系數(shù),汽缸排量和伸縮臂的剛度等。以下是兩種不同的模擬情況下靜態(tài)響應和脈沖響應的結(jié)果。Barrett和Hrudey(1996年)針對橋式起重機的進行了一系列試驗,來研究起重機的結(jié)構(gòu)剛度,起重機的結(jié)構(gòu)慣性,鋼索吊鉤系統(tǒng)的剛度,有效負載和吊裝作業(yè)時的初始條件,在

63、提升重物時是如何影響動態(tài)響應峰值的[2]。這些因素隨時間的變化,在測試項目中獲得的位移,加速度,纜索拉力,橋梁彎矩和端車反作用力值各不相同。動態(tài)增益比的值被定義為:位移,橋梁彎矩和端車反作用力的動態(tài)峰值超過相應的靜態(tài)值。提出兩自由度的分析模型和用一個具有三個無因次參數(shù)的函數(shù)計算動態(tài)增益比的理論值,來描敘起重機和有效載荷系統(tǒng)。Grierson(1991年)審議了靜載荷作用下的設計,即組成的各成員會自動使用完全符合設計標準</p>

64、;<p>  GB 3811—1983《起重機設計規(guī)范》和GB/T 13752—1992《塔式起重機設計規(guī)范》對塔式起重機靜態(tài)剛性的要求為:“塔式起重機在額定起升載荷作用下,塔身在臂架連接處(或在臂架轉(zhuǎn)柱連接處)的水平靜位移位△x應不大于H/100。其中H,對自行式塔式起重機為塔身在臂架連接處至軌面的垂直距離,對附著式塔式起重機為塔身在臂架連接處至最高一個附著點的垂直距離?!?lt;/p><p>  針

65、對塔機靜態(tài)剛性在上述規(guī)范中控制過嚴的問題(△x≤H/100),對塔機靜剛度進行了專項研究,以配合修訂GB/T 3811—1983《起重機設計規(guī)范》。</p><p>  本文其余內(nèi)容安排如下。第2節(jié),對塔機靜剛度控制值的修訂意見。第3節(jié),塔機靜剛度控制值合理性驗證。第4節(jié),與靜剛度控制值對應的塔身靜位移理論計算方法。第5節(jié),塔身靜位移各種計算方法與實測值的比較。第6節(jié),對本文做一個簡單的總結(jié)。</p>

66、<p>  2.對塔機靜剛度控制值的修訂意見</p><p>  由于高強度鋼的普遍使用,結(jié)構(gòu)的強度及穩(wěn)定性已不難滿足,結(jié)構(gòu)的剛度要求正成為制約塔機向輕量化發(fā)展的重要指標。修訂后的塔機靜剛度控制值不僅要滿足當前產(chǎn)品開發(fā)的需要,還應適應今后的發(fā)展。針對我國實際情況,要保證塔機產(chǎn)品的質(zhì)量,使塔機的設計和檢測有據(jù)可依,適當放寬塔機靜剛度控制值是必然趨勢。</p><p>  圖1

67、塔機靜位移示意圖</p><p>  在對塔機生產(chǎn)廠家和用戶進行大量調(diào)研走訪的基礎上,于,王,鄭和王提出了擬推薦的塔機靜剛度控制值及對應的檢測方法,即以空載狀態(tài)下臂根鉸點的位置(此時相對于未變形時塔身理論中心線有一后傾位移,如圖1)為基準,吊載后臂根鉸點的絕對位移△x作為靜位移測量值,用該值來衡量塔機的靜剛度[12]。這種測量靜位移的方法也是目前塔機檢測驗收時使用的方法,該值較易測得,且所測值中基本消除了塔身垂直

68、度偏差。于,王,鄭和王建議與此測量方法對應的靜位移控制值為△x≤1.33H/100,即靜剛度控制值比上述“規(guī)范”中的控制值增大1/3。 </p><p>  根據(jù)“《起重機設計規(guī)范》修訂專題研究項目鑒定評審會“專家的意見,認為于,王,鄭和王推薦的塔機靜剛度控制值是一個合適的限度值,順應了塔機行業(yè)放寬△x限值的修改呼聲,且該方法檢測方

69、便,但為了與國際標準的系數(shù)取值系列一致,建議塔機靜剛度控制值取為△x≤(1.34/100)H。</p><p>  放大塔機靜剛度控制值(1.34H/100),可以降低塔機成本,使塔機向輕量重載化發(fā)展,利于行業(yè)的技術進步。</p><p>  3, 塔機靜剛度控制值合理性驗證</p><p>  為使修訂后的塔機靜剛度控制值能真實地反映當前塔機靜剛度的實際情況,專題

70、研究組對正在使用壽命期限內(nèi)并具有代表性的20種型號塔機的靜剛度進行了實測(見表1)。結(jié)果表明,按現(xiàn)行測量方法,并滿足現(xiàn)行“規(guī)范”中靜剛度控制值H/100的塔機,只有一種型號(序號5),占5%;而靜剛度測量值不大于1.34H/100的有15個,占75%。由此可見,適當放大塔機靜剛度控制值,能使大多數(shù)滿足使用要求的塔機通過檢測部門的驗收。</p><p>  表1 20種不同型號的塔機塔身靜剛度實測值及原控制值&l

71、t;/p><p>  需要說明的是,這20種型號的塔機到目前為止,均能正常使用,且性能優(yōu)良。</p><p>  4. 與靜剛度控制值對應的塔身靜位移理論計算方法</p><p>  靜位移計算方法可采用傳統(tǒng)力學方法或有限元法,傳統(tǒng)力學方法的計算模型有實體壓彎桿件力學模型和格構(gòu)式桁架力學模型,前者簡單實用,后者精度略高但計算繁瑣。</p><p>

72、;  4.1實體壓彎桿件理論力學模型</p><p>  根據(jù)塔機的靜位移力學模型圖2所示,實體壓彎桿件力學模型可得到與本文所述靜位移測量值相對應的理論計算值,因按本文所述測量方法,塔機自重載荷引起的彎矩在空載及吊載兩種狀態(tài)下理論上可完全相抵,又因測量靜位移時不考慮風載及其它水平載荷,故圖2的計算模型中只有垂直載荷N及吊重引起的彎矩M,其撓曲桿的微分方程為:</p><p><b&g

73、t;  (1)</b></p><p>  求解上式可得到塔身項部靜位移的精確計算式:</p><p><b>  (2)</b></p><p><b>  式中</b></p><p><b>  (3)</b></p><p>  N—

74、—在額定起升載荷作用下,塔身與臂架連接處以上所有垂直力(包括塔身自重在此處的折算力,折算方法見GB/T 13752-1992附錄G);</p><p>  M——吊重引起的彎矩,M =OR,Q為額定起升載荷,R為與Q對應的工作幅度。 </p><p>  圖2 塔機的靜位移力學模型</p><p>  也可將

75、上式變換如下。由壓桿的歐拉臨界載荷,</p><p><b>  (4)</b></p><p>  對懸臂壓桿:=2,故有: (5)</p><p>  將三角函數(shù)secu展開為冪級數(shù)</p><p><b>  (6)</b></p><p><b>  則式(

76、2)可簡化成</b></p><p>  將f近似值定義為 ,則有</p><p><b>  (8)</b></p><p>  式中 △M——額定起升載荷對塔身中心線的彎矩M引起的塔身與起重臂連接處的水平位移, (9)</p><

77、p>  ——考慮軸向力影響的撓度放大系數(shù)。</p><p><b>  4.2 有限元模型</b></p><p>  這是有限元法可能的塔式起重機的模型。有限元模型是基于簡化的塔式起重機結(jié)構(gòu)幾何模型。作為一種數(shù)值計算法,由有限元得到的法結(jié)果也是近似的。該塔式起重機模型被分成許多元素(如圖3所示)。在這種塔式起重機的模型中有3種類型的元素:橫梁,橫桿和翼梁元素。

78、彎的支撐用橫梁元素作模型。腹部支撐和可伸長的支撐使用橫桿元素作模型。鋼絲繩用鏈接元素作模型。平衡重物用塊元素作模型。商業(yè)有限元程序ANSYS軟件(ANSYS軟件公司,美國)是用來建立和解決這個問題,并分析結(jié)果。 </p><p>  該材料性能和負載情況與上述部分相同。塔式起重機尺寸也與上面闡述的相同。</p><p>  圖3 塔機有限元模型</p>

79、<p>  5. 塔身靜位移各種計算方法與實測值的比較</p><p>  為了了解不同的計算方法和精確的測量之間的錯誤值,用解析表達式(2)和(8)的結(jié)果與數(shù)值結(jié)果相比較,并利用有限元分析程序ANSYS對其進行分析。同時,比較性實驗數(shù)據(jù)是前面五種類型的塔式起重機的靜態(tài)位移。</p><p>  3種計算方法所得靜位移的數(shù)值 (有限元計算值)與實測值的比較見表2。</p

80、><p>  由表2可知,按式(2)或(3)實體壓彎桿件力學模型所得靜位移計算值的誤差小于12%,而有限元計算值的誤差均小于10%。因?qū)嶓w壓彎桿件力學模型主要考慮弦桿的剛度,未考慮腹桿及其布置形式,而腹桿的剛度及布置形式對塔身的剛度有較大影響。塔身最大靜位移的近似計算值與相同力學模型下的精確計算值相差無幾,誤差不超過1%,故按該力學模型計算塔身最大靜位移時,可選用式(2)或(8)。</p><p&

81、gt;  表2 塔身最大靜位移及與實測值的比較</p><p>  塔機的塔身在實際工作中相對理論中心線的最大水平位移值的計算方法見文獻[12],計算載荷除垂直載荷外,還應考慮自重及吊重引起的彎矩,沿塔身分布的風載荷,因風力、變幅、回轉(zhuǎn)起制動、回轉(zhuǎn)離心力等引起的塔身端部的集中水平力。</p><p><b>  6,總結(jié)</b></p><p&g

82、t;  在分析了收集的許多保持良好的工作狀態(tài)的塔式起重機靜剛度數(shù)據(jù)的基礎上,如果靜剛度控制值指定為H/100 (根據(jù)GB 3811—1983《起重機設計規(guī)范》和GB/T 13752—1992《塔式起重機設計規(guī)范》的要求 )調(diào)查中只有5%的塔式起重機滿足這一要求。如果安本文中提出的使用控制價值為1.34H/100,則中75%的塔式起重機可滿足這一要求。</p><p>  本文中提出的簡化公式和有限元法被用來計算許

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論