摘要翻譯--改進(jìn)的蟻群算法在車(chē)輛路徑優(yōu)化中的研究與應(yīng)用_第1頁(yè)
已閱讀1頁(yè),還剩2頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  改進(jìn)的蟻群算法在車(chē)輛路徑優(yōu)化中的研究與應(yīng)用</p><p><b>  摘要</b></p><p>  車(chē)輛路徑問(wèn)題是物流領(lǐng)域所關(guān)注的熱點(diǎn)問(wèn)題,因?yàn)檐?chē)輛路徑問(wèn)題(Vehicle Routing Problem,VRP)具有復(fù)雜性與多樣性,如何合理高效的規(guī)劃車(chē)輛路徑以最低的成本完成貨物運(yùn)輸,這是一個(gè)極富挑戰(zhàn)性的問(wèn)題。因此,研究物流作業(yè)中配送車(chē)輛的

2、路徑優(yōu)化問(wèn)題,不僅具有重要的理論意義,而且還有很高的實(shí)用價(jià)值。</p><p>  在綜述了國(guó)內(nèi)外有關(guān)車(chē)輛路徑優(yōu)化問(wèn)題的研究基礎(chǔ)上,選取蟻群算法,并對(duì)其加以改進(jìn),來(lái)實(shí)現(xiàn)車(chē)輛路徑的優(yōu)化功能。</p><p>  蟻群算法(Ant Colony Optimization, ACO)是由意大利M. Dorigo等學(xué)者提出,通過(guò)模擬蟻群的覓食行為,構(gòu)造出一種基于種群的進(jìn)化算法。蟻群算法選用分布式并

3、行的計(jì)算機(jī)機(jī)制,并具有很強(qiáng)的魯棒性,易于與其他方法相結(jié)合。所以,對(duì)其進(jìn)行改進(jìn),并應(yīng)用到路徑優(yōu)化問(wèn)題中,這是一種很好的嘗試。</p><p>  本文的主要工作包括蟻群算法的改進(jìn)及其在車(chē)輛路徑優(yōu)化問(wèn)題中的應(yīng)用,主要研究?jī)?nèi)容如下:</p><p> ?。?)對(duì)基本蟻群算法的原理與模型進(jìn)行了學(xué)習(xí),了解其實(shí)現(xiàn)步驟、算法特點(diǎn),并建立起相應(yīng)模型;對(duì)于基本蟻群算法中的多個(gè)關(guān)鍵參數(shù),進(jìn)行了實(shí)驗(yàn)分析。<

4、;/p><p> ?。?)基于基本蟻群算法的兩項(xiàng)缺點(diǎn)——收斂速度緩慢、易陷入局部最優(yōu)解,提出了一種改進(jìn)方案。該改進(jìn)算法借鑒了最大最小蟻群算法中限制信息素范圍的思想,可以有效抑制由于最長(zhǎng)路徑與最短路徑所含信息量的巨大差距而引起的停滯現(xiàn)象。與此同時(shí),引入了局部搜索、局部信息素更新策略,加快了蟻群算法的運(yùn)算速度。在此基礎(chǔ)上,繼續(xù)改良信息素的全局更新機(jī)制,來(lái)實(shí)現(xiàn)算法更快搜索到全局最優(yōu)解的設(shè)想。</p><

5、p> ?。?)將改進(jìn)后的蟻群算法應(yīng)用到基本車(chē)輛路徑問(wèn)題與有時(shí)間窗的車(chē)輛路徑問(wèn)題中,對(duì)比于使用原始蟻群算法所得結(jié)果,改良后算法的搜索性能有了顯著提升,對(duì)車(chē)輛路徑實(shí)現(xiàn)了優(yōu)化作用。</p><p>  本文基于MATLAB.R2011a平臺(tái),實(shí)現(xiàn)了蟻群算法的改進(jìn)及其在車(chē)輛路徑優(yōu)化問(wèn)題中的應(yīng)用。</p><p>  The research and application of the im

6、proved Ant Colony Optimization in the Vehicle Routing optimization problem</p><p><b>  Abstract</b></p><p>  Vehicle routing problem has been a hot issue of logistics industry. Owing

7、 to the complexity and diversity of vehicle routing problem ,how rational and efficient planning of the vehicle at the lowest cost path to complete the transport of goods becomes very challenging problems. Therefore, the

8、 study of logistics operations in the distribution vehicle routing problem, not only has important theoretical significance, but also a high practical value.</p><p>  On the basis of the research of the vehi

9、cle routing problem at home and abroad ,we select Ant Colony Optimization and improved to achieve the optimization of the vehicle path.</p><p>  Ant Colony Algorithm (Ant Colony Optimization, ACO) was propos

10、ed by the Italian scholar M. Dorigo, etc., by simulating the foraging behavior of ant colonies constructed an evolutionary algorithm based on population. Ant colony Optimization select distributed parallel computer mecha

11、nism and has strong robustness, so combined with other methods easily. Therefore, it turns out to be an excellent attempt to improve and apply to the path optimization problem.</p><p>  The main study includ

12、es the improvement and application of Ant Colony Algorithm in the vehicle routing problem.And the main research content is as follows:</p><p>  (1) The study of principles and model of basic ant colony optim

13、ization, their implementation steps, the algorithm characteristics, and establish a corresponding model. Carrying out experimental analysis on several key parameters of basic ant colony optimization.. </p><p&g

14、t;  (2)To solve the disadvantages based on two basic ant colony algorithm - slow convergence, easy to fall into local optimal solution an improved scheme is proposed. The improved algorithm draws on the max-min ant colon

15、y optimization the idea of ??limiting the scope of the pheromone.It can effectively suppress stagnation caused by the huge amount of information gap including longest path and the shortest path. At the same time, the int

16、roduction of local search, local pheromone update strategy to sp</p><p>  (3) The improved algorithm which applied to the basic and with time windows vehicle routing problem compared to the results with the

17、original ant colony algorithm proceeds has been significantly improved and achieves the optimal vehicle routing effect.</p><p>  This paper based on MATLAB.R2011a platform to achieve the improvement of ant c

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論