版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> 畢 業(yè) 設(shè) 計(說明書)</p><p> 題 目 曲軸搬運機械手 </p><p> 專 業(yè)機械設(shè)計制造及其自動化</p><p> 學(xué)生姓名 </p><p> 學(xué) 號 </p>
2、<p> 指導(dǎo)教師 </p><p> 論文字數(shù) </p><p> 完成日期 </p><p> 摘要:隨著科學(xué)技術(shù)的發(fā)展和自動化生產(chǎn)線在企業(yè)產(chǎn)品生產(chǎn)中的廣泛應(yīng)用,機械手作為自動化生產(chǎn)線的重要組成部分也得到了長足的發(fā)展和進
3、步。尤其是隨著機械結(jié)構(gòu)的優(yōu)化,氣動、液壓技術(shù)的成熟,控制元件的發(fā)展和控制方式的不斷改進和創(chuàng)新,機械手的動作精確性、控制靈活性和工作可靠性得到了明顯的改善。機械手的出現(xiàn)在減輕工人勞動強度和難度、提高工作效率和質(zhì)量、降低生產(chǎn)成本上做出了突出貢獻,機械手的發(fā)展在企業(yè)的發(fā)展和創(chuàng)收上起到了舉足輕重的作用。本課題是一個機、電結(jié)合較為緊密的實用性項目,文中對PLC的應(yīng)用、機械結(jié)構(gòu)的設(shè)計、控制方法的選擇等方面進行了必要的探討。最后,總結(jié)了全文,指出了機
4、械手的改進措施、應(yīng)用前景和發(fā)展方向。</p><p> 關(guān)鍵字:機械手,液壓驅(qū)動,PLC(可編程控制器)</p><p> The Manipulator For Moving The Engine’s Crank</p><p> Abstract:With the development of the science and technology and
5、the application of the automobile product line in the production, the manipulator, who serves as the important part of the automobile product line, has also experienced dramatic progress and development. Especially with
6、the improvement of the structure of the machine, the maturity of pneumatics and hydraulics, and the constant improvement of the control element such as the singlechip, PLC, the motion controller, and soon, and the ce<
7、/p><p> Key Words: manipulator, the hydraulic pressure drive, PLC(Programmable Logic Controller)</p><p><b> 目錄</b></p><p><b> 第1章 緒論1</b></p><p&g
8、t; 1.1 工業(yè)機器人(機械手)的概述1</p><p> 1.1.1 工業(yè)機器人的發(fā)展1</p><p> 1.1.2 工業(yè)機器人的分類1</p><p> 1.1.3 工業(yè)機械手的應(yīng)用2</p><p> 1.2 設(shè)計問題的提出2</p><p> 第2章 機械手的總體設(shè)計3</p&
9、gt;<p> 2.1 機械手的組成及各部分關(guān)系概述3</p><p> 2.2 機械手的設(shè)計分析3</p><p> 2.2.1 設(shè)計要求3</p><p> 2.2.2 總體設(shè)計任務(wù)分析3</p><p> 2.2.3 總體方案擬定5</p><p> 第3章 機械手結(jié)構(gòu)的設(shè)計分
10、析6</p><p> 3.1 末端操作器的設(shè)計分析6</p><p> 3.1.1 末端操作器的概述6</p><p> 3.1.2 末端操作器結(jié)構(gòu)的設(shè)計分析6</p><p> 3.2 手腕的設(shè)計分析6</p><p> 3.3 手臂的設(shè)計分析6</p><p> 3
11、.4 機身和機座的設(shè)計分析7</p><p> 第4章 機械手各部件的載荷計算8</p><p> 4.1 設(shè)計要求分析8</p><p> 4.2 手指夾緊機構(gòu)的設(shè)計8</p><p> 4.2.1 手指夾緊機構(gòu)載荷的計算8</p><p> 4.3 手臂伸縮機構(gòu)載荷的計算9</p>
12、<p> 4.4 手臂俯仰機構(gòu)載荷的計算10</p><p> 4.5 手腕擺動機構(gòu)載荷力矩的計算10</p><p> 4.6 機身擺動機構(gòu)載荷力矩的計算12</p><p> 4.7 初選系統(tǒng)工作壓力12</p><p> 第5章 機械手各部件結(jié)構(gòu)尺寸計算及校核14</p><p>
13、; 5.1 手指夾緊機構(gòu)結(jié)構(gòu)尺寸的確定14</p><p> 5.4 手腕擺動機構(gòu)的確定17</p><p> 5.5 機身擺動機構(gòu)的確定17</p><p> 5.5 強度校核17</p><p> 5.6 彎曲穩(wěn)定性校核18</p><p> 第6章 液壓系統(tǒng)的設(shè)計20</p>
14、<p> 6.1 液壓缸或液壓馬達所需流量的確定20</p><p> 6.3 液壓缸或液壓馬達主要零件的結(jié)構(gòu)材料及技術(shù)要求21</p><p> 6.3.1 缸體21</p><p> 6.3.2 缸蓋21</p><p> 6.3.3 活塞21</p><p> 6.3.4 活塞桿
15、22</p><p> 6.3.5 液壓缸的緩沖裝置22</p><p> 6.3.6 液壓缸的排氣裝置22</p><p> 6.4 制定基本方案22</p><p> 6.4.1 基本回路的選擇22</p><p> 6.5 液壓元件的選擇23</p><p> 6.
16、5.1 液壓泵的選擇23</p><p> 6.5.2 液壓泵所需電機功率的確定24</p><p> 6.5.3 液壓閥的選擇24</p><p> 6.5.4 液壓輔助元件的選擇原則25</p><p> 6.5.5 油箱容量的確定26</p><p> 6.5.6 液壓原理圖27</p
17、><p><b> 結(jié)論29</b></p><p><b> 參考文獻30</b></p><p><b> 致謝31</b></p><p> 附錄 圖紙列表32</p><p><b> 第1章 緒論</b>&l
18、t;/p><p> 1.1 工業(yè)機器人(機械手)的概述</p><p> 1.1.1 工業(yè)機器人的發(fā)展</p><p> 1954年,美國人George C.Devol在他申請的專利“Programmed article transfer”中,首次提出了“工業(yè)機器人”的概念。1958年,被譽為“工業(yè)機器人之父”的Joseph F.Engle Berger創(chuàng)建了世界
19、上第一個機器人公司——Unimation公司,并參與設(shè)計了第一臺Unimat機器人。與此同時,另一家美國公司——AMF業(yè)開始研制工業(yè)機器人,即Versatran機器人,它主要用于機器之間的物料搬運。1970年4月,在伊利諾斯工學(xué)院召開了全美第一屆工業(yè)機器人會議。</p><p> 日本機器人的發(fā)展,經(jīng)過了20世紀(jì)60年代的搖籃期、70年代的實用化時期以及80年代的普及、提高期3個基本階段。在1967年,日本東京
20、機械貿(mào)易公司首次從美國AMF公司引進Versatran機器人。1968年,日本川崎重工業(yè)公司與美國Unimation公司締結(jié)國際技術(shù)合作協(xié)議,引進Unimation機器人,1970年實現(xiàn)國產(chǎn)化。從此日本進入了開發(fā)和應(yīng)用機器人技術(shù)時期。1980年,機器人技術(shù)在日本取得了極大的成功與普及。現(xiàn)在日本人呢擁有的工業(yè)機器人的臺數(shù)約占世界總臺數(shù)的65%,而且其制造技術(shù)也處于領(lǐng)先地位。</p><p> 我國工業(yè)機器人起步于
21、20世紀(jì)70年代初期,1972年我國開始研制自己的工業(yè)機器人。經(jīng)過幾十年的發(fā)展,大致經(jīng)歷了三個階段:70年代的萌芽期、80年代的開發(fā)期和90年代的適用化期?,F(xiàn)在,國家更重視機器人工業(yè)的發(fā)展,也有越來越多的企業(yè)和科研人員投入到機器人的開發(fā)研究中。目前,我國研制的工業(yè)機器人已經(jīng)達到了工業(yè)應(yīng)用水平。我國機器人技術(shù)研究主要體現(xiàn)在以下五個方面:一是示教再現(xiàn)型工業(yè)機器人;二是智能機器人;三是機器人化機械;四是以機器人為基礎(chǔ)的重組裝配系統(tǒng);五是多傳感
22、器信息融合與配置技術(shù)。</p><p> 1.1.2 工業(yè)機器人的分類</p><p> 表1-1 機器人分類表</p><p> 關(guān)于機器人如何分類,國際上沒有制定統(tǒng)一的標(biāo)準(zhǔn),有的按負載重量分,有的按控制方式分,有的按自由度分,有的按結(jié)構(gòu)分,有的按應(yīng)用領(lǐng)域分。一般的分類方式如上表。</p><p> 1.1.3 工業(yè)機械手的應(yīng)用&
23、lt;/p><p> 工業(yè)機械手是伴隨工業(yè)生產(chǎn)和科學(xué)技術(shù)的發(fā)展,特別是電子計算機的廣泛應(yīng)用而迅速發(fā)展起來的一門新興技術(shù)裝備。它綜合應(yīng)用了機械,電子,自動控制等先進技術(shù)以及物理,生物等學(xué)科的基礎(chǔ)知識,以實現(xiàn)機械化與自動化的有機結(jié)合而廣泛應(yīng)用在工業(yè)生產(chǎn)的各個部門。</p><p> 工業(yè)機械手是工業(yè)生產(chǎn)發(fā)展中的必然產(chǎn)物。它是一種模仿人體上肢的部分功能,按照預(yù)定要求輸送工件和握持工具進行操作的自
24、動化技術(shù)裝備。這種新穎技術(shù)裝備的出現(xiàn)和應(yīng)用,對實現(xiàn)工業(yè)生產(chǎn)自動化,推動工業(yè)生產(chǎn)的進一步發(fā)展起著重要作用,因而具有強大的生命力,受到人們的廣泛重視和歡迎。</p><p> 工業(yè)上應(yīng)用的機械手,由于使用場合和工作要求的不同,其結(jié)構(gòu)形式亦各有不同,技術(shù)復(fù)雜程度也有很大差別。但它們都有類似人的手臂,手腕和手的部分動作及功能;一般都能按預(yù)定程序,自動地,重復(fù)循環(huán)地進行工作。此外,還有些非自動化的裝備,具有與人體上肢類似
25、的部分動作,結(jié)構(gòu)上與工業(yè)機械手是一致的,亦可歸屬于工業(yè)機械手的范疇。例如,早期就有一種由人直接用繩索牽引進行操作的隨動機械手和近期發(fā)展起來的由人工進行操作的機械手(如平衡吊),以及一些就近按扭控制和遙控的非自動的單循環(huán)的機械手等。</p><p> 實踐證明,工業(yè)機械手可以代替人的繁重勞動,顯著減輕工人的勞動強度,改善勞動條件,提高勞動生產(chǎn)率和生產(chǎn)自動化水平。工業(yè)生產(chǎn)中經(jīng)常出現(xiàn)的笨重工件的搬運和長期,頻繁,單調(diào)
26、的操作,采用機械手是有效的;此外,它還能在高溫,低溫,深水,宇宙,放射性和其他有毒,污染環(huán)境條件下進行操作,更顯示其優(yōu)越性,有著廣闊的發(fā)展前途。</p><p> 1.2 設(shè)計問題的提出</p><p> 在生產(chǎn)實踐中,常常需要將上料、加工、卸料等工序進行合理的安排,組成一條自動流水加工線。但在流水線上加工時,需要許多工人搬運工件,有時勞動強度較大。當(dāng)生產(chǎn)效率很高時,為了減少工人數(shù)量,
27、改善工人的勞動條件,提高勞動生產(chǎn)率這就需要使自動線上工件搬運自動化。于是針對這一問題就提出了要研制一種搬運機械手來代替工人實現(xiàn)工件的搬運上線,并且能滿足定位和重復(fù)定位精度。用搬運機械手來代替工人搬運工件可以減輕工人的勞動強度,減少自動線上的工人數(shù)目,同時也提高了生產(chǎn)效率并且精度也得到了保障。而事實上,在生產(chǎn)領(lǐng)域真正用來加工的時間一般不大于整個生產(chǎn)時間的10%,大部分時間是用在了工件的搬運、裝夾等輔助工序上。從這個方面可以看出研制一種自動
28、化搬運機械手的迫切性和重要性。</p><p> 第2章 機械手的總體設(shè)計</p><p> 2.1 機械手的組成及各部分關(guān)系概述</p><p> 機械手由三大部分(機械部分、傳感部分、控制部分)六個子系統(tǒng)(驅(qū)動系統(tǒng)、機械結(jié)構(gòu)系統(tǒng)、感受系統(tǒng)、機器人-環(huán)境交互系統(tǒng)、人機交互系統(tǒng)、控制系統(tǒng))組成。</p><p> 機械結(jié)構(gòu)系統(tǒng):機器人
29、的機械結(jié)構(gòu)又主要包括末端操作器、手腕、手臂、機身(立柱)。</p><p> 驅(qū)動系統(tǒng):驅(qū)動器是把從動力源獲得的能量變換成機械能,使機器人各關(guān)節(jié)工作的裝置,常見的驅(qū)動形式有步進電機驅(qū)動、直流電機驅(qū)動、交流電機驅(qū)動、液壓驅(qū)動、氣壓驅(qū)動以及近些年出現(xiàn)的一些特殊的新型驅(qū)動(例如超聲波驅(qū)動、磁致伸縮驅(qū)動、靜電驅(qū)動等)。</p><p> 控制系統(tǒng):機器人的控制方式多種多樣,根據(jù)作業(yè)任務(wù)不同,主
30、要可分為點位控制方式(PTP)、連續(xù)軌跡控制方式(CP)、力(力矩)控制方式和智能控制方式。</p><p> 2.2 機械手的設(shè)計分析</p><p> 2.2.1 設(shè)計要求</p><p> 某生產(chǎn)線上搬運工件原由人工完成, 勞動強度大、生產(chǎn)效率低。為了提高生產(chǎn)線的工作效率, 降低成本, 使生產(chǎn)線發(fā)展成為柔性制造系統(tǒng), 適應(yīng)現(xiàn)代自動化大生產(chǎn), 針對具體生產(chǎn)
31、工藝, 利用機器人技術(shù), 設(shè)計用一臺搬運機械手代替人工工作。</p><p> 該機械手能完成如下的動作循環(huán):手臂前伸→手指夾緊抓料→手臂上升→手臂縮回→機身回轉(zhuǎn)180度→手腕回轉(zhuǎn)90度→手臂下降→手臂前伸→手指松開→手臂縮回→機身回轉(zhuǎn)復(fù)位→手腕回轉(zhuǎn)復(fù)位→待料。</p><p> 2.2.2 總體設(shè)計任務(wù)分析</p><p> (1) 結(jié)構(gòu)形式的設(shè)計: 機械手
32、常見的運動形式有1)直角坐標(biāo)型2)圓柱坐標(biāo)型3)球坐標(biāo)(極坐標(biāo))型4)關(guān)節(jié)型(回轉(zhuǎn)坐標(biāo))型5)平面關(guān)節(jié)型五種。</p><p> 圓柱坐標(biāo)型是由三個自由度組成的運動系統(tǒng),工作空間為圓柱形,它與直角坐標(biāo)型比較,在相同的空間條件下,機體所占體積小,而運動范圍大。</p><p> 直角坐標(biāo)型,其運動部分的三個相互垂直的直線組成,其工作空間為長方體,它在各個軸向的移動距離可在坐標(biāo)軸上直接讀出
33、,直觀性強,易于位置和姿態(tài)的編程計算,定位精度高,結(jié)構(gòu)簡單,但機體所占空間大,靈活性較差。</p><p> 球坐標(biāo)型,它由兩個轉(zhuǎn)動和一個直線組成,即一個回轉(zhuǎn),一個俯仰和一個伸縮,其工作空間圖形唯一球體,它可以做上下俯仰動作并能夠抓取地面上的東西或較低位置的工件,具有結(jié)構(gòu)緊湊、工作范圍大的特點,但是結(jié)構(gòu)比較復(fù)雜。</p><p> 關(guān)節(jié)型,這種機器人的手臂與人體上肢類似,其前三個自由度
34、都是回轉(zhuǎn)關(guān)節(jié),這種機器人一般由和大小臂組成,立柱與大臂間形成肘關(guān)節(jié),可使大臂作回轉(zhuǎn)運動和使大臂作俯仰運動,小臂作俯仰擺動,其特點是工作空間范圍大,動作靈活,通用性強,能抓取靠近機座的工件。</p><p> 平面關(guān)節(jié)型,采用兩個回轉(zhuǎn)關(guān)節(jié)和一個移動關(guān)節(jié),兩個回轉(zhuǎn)關(guān)節(jié)控制前后、左右運動,而移動關(guān)節(jié)控制上下運動。這種機器人在水平方向上有柔順度,在垂直方向上有較大的剛度,它結(jié)構(gòu)簡單,動作靈活,多用于裝配作業(yè)中,特別適合
35、中小規(guī)格零件的插接裝配。</p><p> 綜上,本次設(shè)計中采用回轉(zhuǎn)坐標(biāo)型。</p><p> (2) 自由度的確定:自由度(Degrees of Freedom),指機器人所具有的獨立坐標(biāo)軸運動的數(shù)目,不包括末端操作器的開合度。在運動形式上分為為直線運動P,為旋轉(zhuǎn)運動R。自由度數(shù)的多少反映了這種機械手能完成動作的復(fù)雜程度,根據(jù)對機械手必須完成的動作的研究,設(shè)計四個自由度的機械手即可完
36、成所規(guī)定的工作任務(wù)。從機座到手腕,關(guān)節(jié)的運動方式為旋轉(zhuǎn)-直線-直線-旋轉(zhuǎn),即RPPR型。</p><p> (3) 驅(qū)動方式的選擇:1)驅(qū)動系統(tǒng)有液壓驅(qū)動2)氣壓驅(qū)動3)電機驅(qū)動4)機械聯(lián)動四種,其中液壓驅(qū)動和氣壓驅(qū)動較為通用。</p><p> 液壓驅(qū)動:結(jié)構(gòu)緊湊、動作平穩(wěn)、耐沖擊、耐振動、防爆性好。而且液壓技術(shù)比較成熟,具有動力大、力慣量比大、快速響應(yīng)高、易于實現(xiàn)直接驅(qū)動等特點。&
37、lt;/p><p> 氣壓驅(qū)動:具有速度快、系統(tǒng)結(jié)構(gòu)簡單、造價較低、維修方便、清潔等特點,適用于中小負載的系統(tǒng)中,但對速度很難進行精確控制,且氣壓不可太高,所以抓舉能力較低,難于實現(xiàn)伺服控制。</p><p> 電機驅(qū)動:步進或伺服電機可用于程序復(fù)雜、運動軌跡要求嚴(yán)格的小型通用機械手; 異步電機、直流電機適用于抓重大、速度低的專用機械手;電源方便,響應(yīng)快,驅(qū)動力較大,信號檢測、傳遞、處理方
38、便,控制方式靈活,安裝維修方便。但控制性能差,慣性大,不易精確定位。</p><p> 機械聯(lián)動:動作可靠,動作范圍小,結(jié)構(gòu)比較復(fù)雜,適用于自由度少、速度快的專用機械手。</p><p> 并且,同其他轉(zhuǎn)動方式相比較,傳動功率相同時,液壓傳動裝置的重量輕,體積緊湊,可實現(xiàn)無級變速,調(diào)速范圍大。運動件的慣性小,能夠頻繁順序換向,傳動工作平穩(wěn),系統(tǒng)容易實現(xiàn)緩沖吸著震,并能自動防止過載。與電
39、氣配合,容易實現(xiàn)動作和操作自動化,與微電子技術(shù)和計算機配合,能夠?qū)崿F(xiàn)各種自動控制工作。液壓元件基本已經(jīng)上系列化、通用化和標(biāo)準(zhǔn)化,利于CAD技術(shù)的應(yīng)用、提高工效,降低成本。容易達到較高的單位面積壓力,較小的體積可獲得較大的出力(推力或轉(zhuǎn)距)。液壓系統(tǒng)介質(zhì)的可壓縮性小,工作較平穩(wěn),可靠,并可實現(xiàn)較高的位置精度。液壓傳動中,力,速度和方向比較容易實現(xiàn)自動控制。液壓裝置采用油液做介質(zhì),具有防銹性和自潤滑效能,可以提高機械效率,使用壽命長。<
40、;/p><p> 綜上,本次設(shè)計采用液壓驅(qū)動。</p><p> (4) 控制方式的選擇:1)點位控制方式(PTP)2)連續(xù)軌跡控制方式(CP)3)力(力矩)控制方式 4)智能控制方式。</p><p> 點位控制的特點是只控制工業(yè)機器人末端執(zhí)行機構(gòu)在作業(yè)空間中某些規(guī)定的離散點上的位姿??刂茣r只要求工業(yè)機器人快速、準(zhǔn)確地實現(xiàn)相鄰各點之間的運動,而對達到目標(biāo)點的運動
41、軌跡不做任何規(guī)定。這種控制方式的主要技術(shù)指標(biāo)是定位精度和運動所需時間。由于其控制方式易于實現(xiàn),常應(yīng)用于上下料、搬運、點焊等工業(yè)機器人。</p><p> 連續(xù)軌跡控制的特點是連續(xù)的控制工業(yè)機器人末端執(zhí)行器在作業(yè)空間的位姿,要求其嚴(yán)格按照預(yù)定的軌跡和速度在一定的精度要求內(nèi)運動,而且速度可控,軌跡光滑且運動平穩(wěn)。這種控制方式的主要技術(shù)指標(biāo)是工業(yè)機器人末端操作器位姿的軌跡跟蹤精度及平穩(wěn)性。常用于弧焊、噴漆、去毛邊和檢
42、測作業(yè)機器人。</p><p> 力(力矩)控制方式常用于準(zhǔn)確定位并要求使用適度的力或力矩來完成裝配、抓放物體等工作。</p><p> 智能控制方式是通過傳感器獲得周圍環(huán)境的知識,并根據(jù)自身內(nèi)部的知識庫相應(yīng)做出決策。采用智能控制技術(shù)的機器人具有較強的環(huán)境適應(yīng)性及自學(xué)能力,技術(shù)難度及成本要求都比較高。</p><p> 綜上,本次設(shè)計采用點位控制。</p
43、><p> 另外該機械手的動作是有順序要求的,控制系統(tǒng)采用PLC控制機械手實現(xiàn)設(shè)計要求的工序動作,可以簡化控制線路,節(jié)省成本,提高勞動生產(chǎn)率。</p><p> 綜合上述,此次采用電-液伺服點位控制,可以很好的完成自動線工作。</p><p> 2.2.3 總體方案擬定 </p><p> 因為本機械手工作范圍大,位置精度要求高。考慮本機
44、械手工作要求的特殊情況,本設(shè)計采用懸臂式四自由度的機械手,簡圖下所示: </p><p> 圖2-1 機械手結(jié)構(gòu)簡圖</p><p> 自由度具體分配如下:</p><p> 1)手臂回轉(zhuǎn)自由度。擬采用擺動油缸來實現(xiàn),擺動缸的動片與缸體相連接,通
45、過油液帶動葉片轉(zhuǎn)動,與之相連的缸體也發(fā)生轉(zhuǎn)動,從而實現(xiàn)機身的回轉(zhuǎn)。其行程角度靠擋塊和限位行程開關(guān)來調(diào)整。</p><p> 2)手臂俯仰自由度。機器人的手臂俯仰運動,一般采用活塞油(氣)與連桿機構(gòu)聯(lián)用來實現(xiàn)。設(shè)計中擬采用單活塞桿液壓缸來實現(xiàn),缸體采用尾部耳環(huán)與機身連接,而其活塞桿的伸出端則與手臂通過鉸鏈相連。其行程大小靠擋塊和限位行程開關(guān)來調(diào)整。</p><p> 3)手臂伸縮自由度。
46、由于油缸或氣缸的體積小,質(zhì)量輕,因而在機器人手臂結(jié)構(gòu)中應(yīng)用較多。設(shè)計中擬采用單活塞桿液壓缸來實現(xiàn),其伸縮行程大小靠擋塊和限位行程開關(guān)來調(diào)整。</p><p> 4)手腕回轉(zhuǎn)自由度。擬采用擺動液壓缸來實現(xiàn)。當(dāng)注入壓力油時,油壓推動動片連同轉(zhuǎn)軸一起回轉(zhuǎn)。因為動片是固定在轉(zhuǎn)軸上的,故動片轉(zhuǎn)動時,轉(zhuǎn)軸也隨著其一起轉(zhuǎn)。而末端操作器與轉(zhuǎn)軸是固定在一起的,故轉(zhuǎn)軸一轉(zhuǎn)手部便一起轉(zhuǎn),從而實現(xiàn)手腕的回轉(zhuǎn)運動。其行程角度靠擋塊和限位
47、行程開關(guān)來調(diào)整。</p><p> 第3章 機械手結(jié)構(gòu)的設(shè)計分析</p><p> 3.1 末端操作器的設(shè)計分析</p><p> 3.1.1 末端操作器的概述</p><p> 工業(yè)機器人的末端操作器是機器人直接用于抓取、握緊、吸附專用工具等進行操作的部件,根據(jù)被操作工件的形狀、尺寸、重量、材質(zhì)及表面形態(tài)各有不同,其形式也多種多樣,
48、大部分末端操作器的結(jié)構(gòu)是根據(jù)特定的工件專門加工的,常用的有四類:1)夾鉗式取料手2)吸附式取料手3)專用操作器及轉(zhuǎn)換器4)仿生多指靈巧手。</p><p> 夾鉗式取料手是工業(yè)機器人最常用的一種末端操作器形式,在流水線上應(yīng)用廣泛。它一般由手指、驅(qū)動機構(gòu)、傳動機構(gòu)、連接與支承元件組成,工作機理類似于常用的手鉗。</p><p> 吸附式取料手靠吸附力取料,根據(jù)吸附力的不同分為氣吸附和磁吸
49、附兩種。吸附式取料手應(yīng)用于大平面(單面接觸無法抓?。⒁姿椋úA?、磁盤)、微?。ú灰鬃ト。┑奈矬w。</p><p> 因為專用操作器及轉(zhuǎn)換器和仿生多指靈巧手的技術(shù)難度及成本要求都比較高,故在此不多做介紹。</p><p> 3.1.2 末端操作器結(jié)構(gòu)的設(shè)計分析</p><p> 根據(jù)發(fā)動機曲軸結(jié)構(gòu)特點,本次設(shè)計的機械手的末端操作器宜采用夾鉗式取料手。</
50、p><p> 夾鉗式取料手的手指的結(jié)構(gòu)形式通常取決于被夾持工件的形狀和特性。其中V形指一般用于夾持圓柱形工件,具有夾持平穩(wěn)可靠,夾持誤差小等特點。</p><p> 3.2 手腕的設(shè)計分析</p><p> 機器人手腕是連接末端操作器和手臂的部件,它的作用是調(diào)節(jié)或改變工件方位,因而它具有獨立的自由度,以使機器人末端操作器適應(yīng)復(fù)雜的動作要求。此處手腕需實現(xiàn)手部的翻轉(zhuǎn)
51、(Roll)動作,腕部結(jié)構(gòu)主要體現(xiàn)在手部相對于臂部的旋轉(zhuǎn)運動上。</p><p> 3.3 手臂的設(shè)計分析</p><p> 手臂是機器人執(zhí)行機構(gòu)中重要的部件,它的作用是將被抓取的工件運動到給定的位置上。手臂的結(jié)構(gòu)要緊湊小巧,才能使手臂運動輕快、靈活。</p><p> 手臂一般有伸縮運動、左右回轉(zhuǎn)運動、升降(或俯仰)運動三個自由度。在一般情況,手臂的伸縮和回
52、轉(zhuǎn)、俯仰均要求勻速運動,但在手臂的起動和終止瞬間,運動是變化的,為了減少沖擊,要求起動時間的加速度和終止前速度不能太大,否則引起沖擊和振動。伸縮運動一般采用直線液壓缸驅(qū)動,俯仰運動大多采用伸縮單作用(單活塞桿)驅(qū)動,而回轉(zhuǎn)運動則大多用回轉(zhuǎn)缸或齒條缸來實現(xiàn)。</p><p> 本設(shè)計采用單作用(單活塞桿)缸來實現(xiàn)手臂的伸縮。為了增加手臂的剛性,防止手臂在伸縮運動時繞軸線轉(zhuǎn)動或產(chǎn)生變形,手臂的伸縮機構(gòu)需設(shè)置導(dǎo)向裝置
53、,或設(shè)計方形、花鍵等形式的臂桿。根據(jù)手臂的結(jié)構(gòu)、抓重等因素,為了使抓取時不產(chǎn)生偏重力矩使抓取可靠,本設(shè)計中采用四根導(dǎo)向柱的臂伸縮結(jié)構(gòu)。這種結(jié)構(gòu)的特點是行程長,抓重大,而工件不規(guī)則時還可以防止產(chǎn)生過大的偏重力矩。簡圖如下:</p><p> 圖3-1 四導(dǎo)向桿式手臂機構(gòu)簡圖</p><p> 從圖中可以比較清楚地看到手臂伸縮油缸結(jié)構(gòu)及導(dǎo)向桿的安放方式以及手臂與其他部件的連接點。<
54、/p><p> 手臂俯仰運動采用單作用(單活塞桿)缸來驅(qū)動。直線油缸的缸底與機身通過鉸鏈相連,而油缸活塞桿的伸出端則與臂部鉸接,這樣當(dāng)壓力油進個油缸時就驅(qū)動活塞桿往復(fù)運動,通過活塞桿的運動就使與其相連的手臂形成了俯仰的運動。由于俯仰油缸是采用底部耳環(huán)擺動式直線缸,所以在活塞桿往復(fù)運動的同時,缸體可在平面內(nèi)擺動。</p><p> 采用擺動馬達來實現(xiàn)手臂的回轉(zhuǎn)。擺動馬達布置在機身上部,手臂部
55、件用銷軸與回轉(zhuǎn)缸體上的耳叉連接,作為手臂俯仰運動的支點?;剞D(zhuǎn)缸的轉(zhuǎn)軸和機身固定連接,擺動缸的動片與缸體相連,當(dāng)擺動缸進壓力油時,通過葉片的帶動,缸體隨之轉(zhuǎn)動,從而實現(xiàn)機身的回轉(zhuǎn)。</p><p> 對于懸臂式的機械手,還要考慮零件在手臂上的布置,就是要計算手臂移動零件時的重量對回轉(zhuǎn)、升降、支承中心的偏重力矩。偏重力矩對手臂運動很不利。偏重力矩過大,會引起手臂的振動,在升降時還會發(fā)生一種沉頭現(xiàn)象,也會影響運動的靈
56、活性,嚴(yán)重時手臂與立柱會卡死。所以在設(shè)計手臂時要盡量使手臂重心通過回轉(zhuǎn)中心,或離回轉(zhuǎn)中心要盡量地近,以減少偏重力矩。為減少轉(zhuǎn)動慣量:1)可減少手臂運動件的輪廓尺寸2)減少回轉(zhuǎn)半徑,在安排機械手動作順序時,先縮后回轉(zhuǎn)(或先回轉(zhuǎn)后伸),盡可能在較小的前伸位置進行回轉(zhuǎn)動作3)在驅(qū)動系統(tǒng)中設(shè)有緩沖裝置。</p><p> 3.4 機身和機座的設(shè)計分析</p><p> 機身,又稱為立柱,是支撐
57、手臂的部件,并能輔助實現(xiàn)手臂的升降、回轉(zhuǎn)或俯仰運動。它是機器人的基礎(chǔ)部分,起支承作用。對固定機器人,直接連接在地面基礎(chǔ)上,對移動式機器人,則安裝在移動機構(gòu)上。</p><p> 機器人機座可分為固定式和行走式兩種,一般工業(yè)機器人的機座為固定式。固定式機器人的機身直接連接在地面基礎(chǔ)上,也可以固定在機身上。</p><p> 此處要求機械手的工作范圍比較小,故設(shè)計為固定式機器人,機身與機座
58、用螺柱連接,機座用螺栓固定在地面基礎(chǔ)上。</p><p> 機身設(shè)計要求:1)剛度和強度大,穩(wěn)定性好2)運動靈活,導(dǎo)套不宜過短,避免卡死3)驅(qū)動方式適宜,結(jié)構(gòu)布置合理。</p><p> 第4章 機械手各部件的載荷計算</p><p> 4.1 設(shè)計要求分析</p><p> 本課題設(shè)計的曲軸搬運機械手采用關(guān)節(jié)型坐標(biāo)系、全液壓驅(qū)動,具
59、有手臂伸縮、俯仰、回轉(zhuǎn)和手腕回轉(zhuǎn)四個自由度,以及手指的抓取動作。執(zhí)行機構(gòu)相應(yīng)由手部抓取機構(gòu)、手腕回轉(zhuǎn)機構(gòu)、手臂伸縮機構(gòu)、手臂俯仰機構(gòu)、手臂回轉(zhuǎn)機構(gòu)和各定位裝置等組成,每一部分均由液壓缸驅(qū)動與控制。</p><p> 它完成的動作循環(huán)為:手臂前伸→手指夾緊抓料→手臂上升→手臂縮回→機身回轉(zhuǎn)180度→手腕回轉(zhuǎn)90度→手臂下降→手臂前伸→手指松開→手臂縮回→機身回轉(zhuǎn)復(fù)位→手腕回轉(zhuǎn)復(fù)位→待料。</p>&
60、lt;p> 4.2 手指夾緊機構(gòu)的設(shè)計</p><p> 設(shè)計中采用四指V形結(jié)構(gòu),指面光滑,避免工件被夾持部位的表面受損。手指的驅(qū)動采用彈簧復(fù)位(單活塞桿)單作用液壓缸,傳動機構(gòu)采用斜楔杠桿式復(fù)合回轉(zhuǎn)傳動,并在杠桿上裝有張緊彈簧,以保證手指夾緊驅(qū)動液壓缸的復(fù)位。手指厚度根據(jù)需要夾持的工件設(shè)定,V形指合攏后的的尺寸為工件被夾持部位直徑的外接正六邊形,保證了機械手工作時的可靠性。</p>&l
61、t;p> 4.2.1 手指夾緊機構(gòu)載荷的計算</p><p> 手指加在工件上的夾緊力,是設(shè)計手部結(jié)構(gòu)的主要依據(jù)。夾緊力必須克服工件重力所產(chǎn)生的載荷以及工件運動狀態(tài)變化所產(chǎn)生的載荷(慣性力或慣性力矩),以使工件保持可靠的夾緊狀態(tài)。</p><p> 手指對工件的夾緊力計算:</p><p><b> (4-1)</b></p
62、><p> 式中: ——安全系數(shù),通常取1.2~2.0;</p><p> ——工作情況系數(shù),主要考慮慣性力的影響。可估算:</p><p> = (4-2)</p><p> 其中:——重力加速度;</p><p> ——運載工件時重力方
63、向的最大上升加速度,可計算:</p><p><b> ?。?-3)</b></p><p> ——運載工件時重力方向的最大上升速度,0.07。</p><p> ——系統(tǒng)達到最高速度的時間,一般取0.3~0.5。</p><p> ——方位系數(shù),根據(jù)手指與工件形狀以及手指與工件位置不同進行選定。0.9~1.1。&
64、lt;/p><p> ——被抓取工件所受重力()。</p><p><b> 計算可得:</b></p><p> 手指夾緊由單作用液壓缸驅(qū)動實現(xiàn),則手指夾緊缸的載荷為:</p><p><b> 160</b></p><p> 4.3 手臂伸縮機構(gòu)載荷的計算<
65、/p><p> 手臂伸縮采用雙作用液壓缸實現(xiàn),臂部作水平伸縮運動時,首先要克服摩擦阻力,包括油缸與活塞之間的摩擦阻力及導(dǎo)向桿與支承滑套之間的摩擦阻力等,還在克服啟動過程中的慣性力。其驅(qū)動力可可按下式計算:</p><p><b> (4-4)</b></p><p> 式中: ——各支承處的的摩擦阻力(N),其大小可按下式估算:</p&
66、gt;<p><b> (4-5)</b></p><p> 式中: G——運動部件所受的重力();</p><p> ——外載荷作用于導(dǎo)軌上的正壓力(),其大小可按下式計算:</p><p><b> (4-6)</b></p><p> ——摩擦系數(shù),取0.1,詳見機械
67、設(shè)計手冊表23.4-1;</p><p> ——啟動過程中的慣性力(),其大小可按下式估算:</p><p><b> ?。?-7)</b></p><p> 式中: ——重力加速度,取9.8;</p><p> ——速度變化量()。如果臂部從靜止?fàn)顟B(tài)加速到工作速度時,則這個過程的速度變化量就等于臂部的工作速度。&
68、lt;/p><p> ——啟動或制動時間(),一般為0.1~。對輕載低速運動部件取小值,對重載高速部件取大值,行走機械一般取0.5~1.5。</p><p><b> 經(jīng)過計算得:</b></p><p><b> =</b></p><p> 4.4 手臂俯仰機構(gòu)載荷的計算</p>
69、<p> 當(dāng)手臂從水平位置成仰角時或從角度恢復(fù)為水平時的加速或減速過程,鉸接活塞桿的載荷(即俯仰直線缸驅(qū)動力)達到最大。其在垂直方向上的最大線速度為0.07,加速時間為0.1,由于升降過程一般不是等加速運動,故最大驅(qū)動力矩要比理論平均值大一些,一般取平均值的1.3倍。則手臂俯仰油缸載荷:</p><p><b> ?。?-8)</b></p><p>
70、 式中: ——手臂俯仰缸所支撐的重量(),由下式可得:</p><p> ——手臂俯仰缸的活塞桿的加速度。</p><p><b> 經(jīng)過計算得:</b></p><p> 4.5 手腕擺動機構(gòu)載荷力矩的計算</p><p> 設(shè)計采用擺動液壓缸實現(xiàn),缸蓋通過法蘭與手臂活塞桿聯(lián)接,結(jié)構(gòu)如圖所示:</p&
71、gt;<p> 圖4-1 手部結(jié)構(gòu)簡圖</p><p> 手腕回轉(zhuǎn)運動驅(qū)動力矩,應(yīng)根據(jù)抓緊工件時運動產(chǎn)生的慣性力矩與回轉(zhuǎn)部件支承處的摩擦力矩來計算?;剞D(zhuǎn)動時,由于起動過程中不是等加速運動,所以最大驅(qū)動力矩比理論上平均值大一些,計算時一般取1.3倍。計算時還要考慮液壓馬達的機械效率(0.9~0.99),驅(qū)動力矩按下式計算:</p><p><b> ?。?-9)
72、</b></p><p> 式中:——摩擦力矩(包括各支承處的摩擦力矩)();</p><p> ——起動時慣性力矩(),一般按下式計算:</p><p><b> ?。?-10)</b></p><p> 其中: ——臂部對其回轉(zhuǎn)軸線的轉(zhuǎn)動慣量();</p><p> ——速
73、度變化量();</p><p> ——回轉(zhuǎn)運動起動或制動所需的時間(),一般為0.1~0.5。對輕載低</p><p> 速運動部件取小值,對重載高速部件取大值,行走機械一般取0.5~1.5。</p><p> 經(jīng)過計算可得如下結(jié)果:</p><p><b> = </b></p><p>
74、; 4.6 機身擺動機構(gòu)載荷力矩的計算</p><p> 臂部回轉(zhuǎn)運動驅(qū)動力矩,應(yīng)根據(jù)啟動時產(chǎn)生的慣性力矩與回轉(zhuǎn)部件支承處的摩擦力矩來計算。回轉(zhuǎn)動時,由于起動過程中不是等加速運動,所以最大驅(qū)動力矩比理論上平均值大一些,計算時一般取1.3倍。計算時還要考慮液壓馬達的機械效率(0.9~0.99),驅(qū)動力矩按下式計算:</p><p> 式中: ——摩擦力矩(包括各支承處的摩擦力矩) ()
75、;</p><p> ——起動時慣性力矩(),一般按下式計算:</p><p> 其中: ——臂部對其回轉(zhuǎn)軸線的轉(zhuǎn)動慣量();</p><p> ——速度變化量();</p><p> ——回轉(zhuǎn)運動起動或制動所需的時間(s), 一般為0.1~0.5s。對輕載低</p><p> 速運動部件取小值,對重載高速
76、部件取大值,行走機械一般取=0.5~1.5m/s。</p><p> 在計算臂部部件的轉(zhuǎn)動慣量時,可將形狀復(fù)雜的零件簡化為幾個形狀簡單的零件,分別求出各簡單零件的轉(zhuǎn)動慣量。若零、部件沿臂部伸縮運動方向上的軸向尺寸與其重心到回轉(zhuǎn)軸線的距離比值不超過二分之一時,一般可把它當(dāng)作質(zhì)點來計算,這樣簡化計算的誤差不超過5%。經(jīng)過計算可得如下結(jié)果:</p><p><b> =</b
77、></p><p> 4.7 初選系統(tǒng)工作壓力</p><p> 壓力的選擇要根據(jù)載荷大小和設(shè)備類型而定。還要考慮執(zhí)行元件的裝配空間、經(jīng)濟條件及元件供應(yīng)情況等的限制。在載荷一定的情況下,工作壓力低,勢必要加大執(zhí)行元件的結(jié)構(gòu)尺寸,對某些設(shè)備來說,尺寸要受到限制,從材料消耗角度看也不經(jīng)濟;反之,壓力選得太高,對泵、缸、閥等元件的材質(zhì)、密封、制造精度也要求很高,必然要提高設(shè)備成本。一般
78、來說,對于固定的尺寸不太受限制的設(shè)備,壓力選低一些,行走機械重載設(shè)備壓力要選得高一些。選擇可參考一下兩表:</p><p> 表4-1 按載荷選擇工作壓力</p><p> 表4-2 各種機械常用的系統(tǒng)工作壓力</p><p> 從各方面綜合考慮,根據(jù)計算所得的數(shù)據(jù),搬運機械手的工作壓力選擇為8MPa。</p><p> 第5章
79、機械手各部件結(jié)構(gòu)尺寸計算及校核</p><p> 本次設(shè)計的機械手的主要結(jié)構(gòu)部件即為液壓缸,總體結(jié)構(gòu)尺寸即為液壓缸尺寸。一般來說液壓缸是標(biāo)準(zhǔn)件,但有時也需來自行設(shè)計,故需了解其主要尺寸的計算及強度、剛度的驗算方法。對于活塞缸,缸的直徑是指缸的內(nèi)徑。缸的內(nèi)徑D和活塞桿直徑d可根據(jù)最大總負載和選取的工作壓力來確定。</p><p> 5.1 手指夾緊機構(gòu)結(jié)構(gòu)尺寸的確定</p>
80、<p> 手指夾緊采用的單作用活塞缸,由上章已知其載荷力大小。</p><p> (1)液壓缸內(nèi)徑及活塞桿外徑的確定</p><p> 為液壓缸活塞桿工作在受壓狀態(tài),下圖為活塞桿工作在受拉狀態(tài)。</p><p><b> 活塞桿受壓時</b></p><p> 圖5-1 活塞桿受壓示意圖</
81、p><p><b> ?。?-1)</b></p><p><b> 活塞桿受拉時</b></p><p> 圖5-2 活塞桿受拉示意圖</p><p><b> ?。?-2)</b></p><p> 式中: ——無桿活塞桿有效作用面積();&l
82、t;/p><p> ——有桿活塞桿有效作用面積();</p><p> ——液壓缸工作腔壓力8MPa;</p><p> ——背壓力,液壓缸回油腔壓力,其值根據(jù)回路的具體情況而定,初算時可參照表5-1,此處選取背壓0。</p><p><b> ——油缸內(nèi)徑();</b></p><p>
83、——活塞桿直徑()。</p><p> 表5-1 執(zhí)行元件背壓力</p><p> 對單活塞桿缸,無桿腔進液體或氣體時,不考慮機械效率,可得:</p><p> D= (5-3)</p><p> 有桿腔進液體或氣體時,不考慮機械效率,可得:</p><p> =
84、 (5-4)</p><p> 這時,上面兩式便可簡化,即無桿腔進液體時:</p><p> = (5-5)</p><p><b> 有桿腔進油時:</b></p><p> = (
85、5-6)</p><p> 若綜合考慮排液對活塞產(chǎn)生的背壓,活塞和活塞桿處密封及導(dǎo)套產(chǎn)生的摩擦力,以及運動件質(zhì)量產(chǎn)生慣性力等的影響,一般取機械效率0.8或0.9?;钊麠U的桿徑可根據(jù)工作壓力選取,見表5-2。</p><p> 表5-2 按工作壓力選取d/D</p><p> 當(dāng)液壓缸的往復(fù)速度比有一定要求時,桿徑可由下式計算。 </p>
86、<p> = (5-7)</p><p> 液壓缸的速比過大會使無桿腔產(chǎn)生過大的背壓,速度比過小則活塞桿太細,穩(wěn)定性不好。推薦液壓缸的速度比如表所示。</p><p> 表5-3 按速比要求確定d/D</p><p> 經(jīng)過計算可得夾緊液壓缸的液壓缸內(nèi)徑96,活塞桿直徑67.2。按照GB/T2348
87、-1993標(biāo)準(zhǔn),圓整其值為,活塞桿直徑。</p><p> 液壓缸的缸筒長度由活塞桿最大行程、活塞長度、活塞桿導(dǎo)向套長度、活塞桿密封長度和特殊要求的其它長度確定。一般活塞桿寬度(1.6~1.0);在>80時,導(dǎo)向套滑動面長度(0.6~1.0)。為了減少加工難度,一般液壓缸缸筒長度不應(yīng)大于內(nèi)徑的20~30倍。根據(jù)以上原則并聯(lián)系實際工況取夾緊液壓缸缸筒長度160。</p><p>
88、缸筒是液壓缸中最重要的零件,它承受液體作用的壓力,其臂厚需進行計算?;钊麠U受軸向壓縮負載時,為避免發(fā)生縱向彎曲,還要進行壓桿穩(wěn)定性驗算。</p><p> 中、高壓缸一般用無縫鋼管作缸筒,大多數(shù)屬薄壁微,即≥10時,其最薄處的壁厚用材料力學(xué)薄壁圓筒公式計算壁厚,即:</p><p><b> ?。?-8)</b></p><p> 式中:—
89、—缸筒內(nèi)最高工作壓力;</p><p> ——缸筒材料的許用應(yīng)力,由下式可計算:</p><p> = (5-9)</p><p> 式中: ——材料的抗拉強度,查機械手冊得610MPa;</p><p> ——安全系數(shù),當(dāng)≥10時一般取=5;當(dāng)<10時,稱為厚壁筒,高壓缸的缸筒大
90、都屬于此類。</p><p> 計算可得夾緊液壓缸壁厚20。</p><p> 5.2 手臂伸縮機構(gòu)結(jié)構(gòu)尺寸的確定</p><p> 手臂伸縮機構(gòu)采用的雙作用活塞缸,由上章已知其載荷力大小。同理,經(jīng)過計算可得夾緊液壓缸的液壓缸內(nèi)徑145,活塞桿直徑101.5。按照GB/T2348-1993標(biāo)準(zhǔn),圓整其值為160,活塞桿直徑100。根據(jù)以上原則并聯(lián)系實際工況取手
91、臂伸縮液壓缸缸筒長度2000,壁厚36。</p><p> 5.3 手臂俯仰機構(gòu)結(jié)構(gòu)尺寸的確定</p><p> 手臂俯仰機構(gòu)采用的雙作用活塞缸,由上章已知其載荷力大小。同理,經(jīng)過計算可得夾緊液壓缸的液壓缸內(nèi)徑101,活塞桿直徑70.7。按照GB/T2348-1993標(biāo)準(zhǔn),圓整其值為100,活塞桿直徑70。根據(jù)以上原則并聯(lián)系實際工況取手臂俯仰液壓缸缸筒長度630,壁厚28。</p
92、><p> 5.4 手腕擺動機構(gòu)的確定</p><p> 手腕擺動選用的葉片式擺動液壓缸,由上一章已知其載荷力矩的大小。</p><p><b> 擺動液壓缸的排量為</b></p><p><b> (5-10) </b></p><p> 式中: T——液壓馬達的
93、載荷轉(zhuǎn)矩();</p><p> ——液壓馬達的進出口壓(),已知為8MPa。</p><p><b> 計算可得:</b></p><p><b> /r</b></p><p> 根據(jù)實際工況取設(shè)計中選取YMD30葉片擺動液壓缸。</p><p> 5.5 機身
94、擺動機構(gòu)的確定</p><p> 機身擺動選用的葉片式擺動液壓缸,由上一章已知其載荷力矩的大小。</p><p><b> 擺動液壓缸的排量為</b></p><p><b> /r</b></p><p> 根據(jù)實際工況設(shè)計中選取YMD300的葉片擺動液壓缸。</p><
95、;p><b> 5.5 強度校核</b></p><p> 活塞桿在穩(wěn)定工況下,如果只受軸向的推力和拉力,可以近似地用直桿承受拉壓負載的簡單強度計算公式進行計算:</p><p><b> (5-11)</b></p><p> 式中: ——活塞桿的作用力,單位;</p><p>
96、 ——活塞桿直徑,單位;</p><p> ——材料的許用應(yīng)力,查機械設(shè)計手冊為600MPa。</p><p> 下面各液壓缸的活塞桿校核如下:</p><p> 故<<,所以滿足強度要求。</p><p> 5.6 彎曲穩(wěn)定性校核</p><p> 活塞桿受軸向壓力作用時,有可能產(chǎn)生彎曲,當(dāng)此軸
97、向力達到臨界值時,會出現(xiàn)壓桿不穩(wěn)定現(xiàn)象學(xué),臨界值的大小與活塞桿長和直徑,以及缸的安裝方式等有關(guān)。只有當(dāng)活塞桿的計算長度≥10時,才進行活塞桿的縱向穩(wěn)定性計算。所以只需校核手臂伸縮液壓缸,其計算按材料力學(xué)的有關(guān)公式進行。</p><p> 使缸保持穩(wěn)定性的條件為:</p><p><b> (5-12)</b></p><p><b&g
98、t; ?。?-13)</b></p><p><b> ?。?-14)</b></p><p><b> ?。?-15)</b></p><p> 式中: ——缸承受的軸向壓力();</p><p> ——安全系數(shù),一般取3.5~6;</p><p> —
99、—液壓缸安裝及導(dǎo)向系數(shù),見機械設(shè)計手表20-6-17。</p><p> ——活塞桿彎曲失穩(wěn)的臨界壓力(),可由下式計算: </p><p> L——液壓缸支承長度();</p><p> ——活塞桿橫截面慣性矩(),可由下式計算:</p><p> ——實際彈性模數(shù),可由下式計算:</p><p> ——材
100、料的彈性模數(shù)(),鋼材;</p><p> ——材料組織缺陷系數(shù),鋼材一般取a;</p><p> ——活塞桿截面不均勻系數(shù),一般取b;</p><p> ——活塞桿直徑()。</p><p><b> 計算可得:</b></p><p><b> 4.9×</
101、b></p><p> 所以彎曲強度滿足要求。</p><p> 第6章 液壓系統(tǒng)的設(shè)計</p><p> 6.1 液壓缸或液壓馬達所需流量的確定</p><p> 6.1.1 液壓缸工作時所需流量:</p><p><b> ?。?-1)</b></p><p&
102、gt; 式中: ——液壓缸有效作用面積();</p><p> ——活塞與缸體的相對速度()。</p><p> 1.無桿活塞桿有效作用面積:</p><p><b> (6-2)</b></p><p> 式中: ——油缸內(nèi)徑()。</p><p> 2.有桿活塞桿有效作用面積:
103、</p><p><b> (6-3)</b></p><p> 式中: ——活塞桿直徑()。經(jīng)過計算可得各活塞的有效面積如下表:</p><p> 表6-1 各活塞的有效面積</p><p> 經(jīng)過計算可得各液壓缸流量下表所示:</p><p> 表6-2 各液壓缸流量</
104、p><p> 6.2 液壓馬達工作時的流量:</p><p> 查表得YMD30擺角90°,流量(內(nèi)泄漏量)為300;YMD300擺角270°,流量(內(nèi)泄漏量)為470。</p><p> 6.3 液壓缸或液壓馬達主要零件的結(jié)構(gòu)材料及技術(shù)要求</p><p><b> 6.3.1 缸體</b>&l
105、t;/p><p> 液壓缸缸體的常用材料有20、35、45號無縫鋼管。因20號鋼的力學(xué)性能略低,且不能調(diào)質(zhì),應(yīng)用較少。當(dāng)缸筒與缸底、缸頭、管接頭或耳軸等件需焊接時,則應(yīng)采用焊接性能比較好的35鋼,初加工后調(diào)質(zhì)。一般情況下,均采用45鋼,并調(diào)質(zhì)到241~285HB。缸體毛坯也可采用鍛鋼、鑄鋼或鑄鐵件。鑄鐵可采用ZG35B等材料,鑄鐵可采用HT200~HT350間幾個牌號或球墨鑄鐵。特殊情況下,可采用鋁合金等材料。&l
106、t;/p><p> 設(shè)計中缸體材料選用45號鋼,并應(yīng)調(diào)質(zhì)到241~285HB。缸體內(nèi)徑采用H8配合?;钊捎孟鹉z密封圈密封,該密封結(jié)構(gòu)結(jié)構(gòu)簡單,密封可靠,摩擦阻力小,但是要求缸孔內(nèi)臂十分光滑,故取缸體內(nèi)表面的粗糙度為Ra=0.1~0.4。</p><p> 缸體內(nèi)徑的圓度公差按8級精度選取,圓柱度公差按8級精度選取。缸體端面的垂直度公差按7級精度選取。帶有耳環(huán)的缸體,而空孔徑的中心線對缸體
107、內(nèi)孔軸線的垂直度公差按9級精度選取。為了防止腐蝕和提高壽命,缸體內(nèi)表面鍍以厚度為30~40的鉻層,鍍后進行珩磨或拋光。它們的安裝支承方式通常有臺肩支承和缸底支承兩種,這里均采用法蘭連接缸底支承。</p><p><b> 6.3.2 缸蓋</b></p><p> 液壓缸的缸蓋可選用35、45號鍛鋼或ZG35、ZG45鑄鋼或HT200、HT300、HT350鑄鐵等
108、材料。</p><p> 當(dāng)缸蓋本身又是活塞桿的導(dǎo)向套時,缸蓋最好選用鑄鐵。同時,應(yīng)在導(dǎo)向表面上熔堆黃銅、青銅或其他耐磨材料。如果采用在缸蓋中壓入導(dǎo)向套的結(jié)構(gòu)時,導(dǎo)向套材料則應(yīng)為耐磨鑄鐵、青銅或黃銅等。</p><p> 設(shè)計中缸蓋本身又是活塞桿的導(dǎo)向套,故缸蓋材料選用45號鋼。同時,在導(dǎo)向表面上熔堆黃銅、青銅或其它耐磨材料。</p><p> 缸蓋直徑和活塞
109、桿緩沖孔的圓柱度公差按9級精度選取,同軸度公差值為0.03mm。端面與直徑軸心線的垂直度公差值按7級精度選取,導(dǎo)向孔的表面粗糙度為Ra=1.25μm。</p><p><b> 6.3.3 活塞</b></p><p> 活塞缸活塞常用的材料為耐磨鑄鐵、灰鑄鐵(HT300、HT350)、鋼(有的在外徑上套有尼龍66、尼龍1010或夾布酚醛塑料的耐磨環(huán))及鋁合金。&
110、lt;/p><p> 設(shè)計中活塞的材料選用HT350,活塞與活塞桿采用螺紋連接?;钊鈴綄?nèi)孔的徑向跳動公差按7級精度選取,端面對內(nèi)孔軸線的垂直度公差也按7級精度選取。外徑的圓柱度公差值按9級精度選取。</p><p><b> 6.3.4 活塞桿</b></p><p> 活塞桿選用外螺紋結(jié)構(gòu)、實心桿,材料選用45號鋼,粗加工后調(diào)質(zhì)到硬度為
111、229~285HB,必要時再經(jīng)高頻淬火,硬度可達HRC45~55。活塞桿各外徑的圓度公差按9級精度選取,d的圓柱度公差按8 級精度選取,活塞桿兩端的徑向跳動公差為0.01mm,活塞桿端的垂直度公差按7級精度選取,活塞桿上的螺紋按6級精度加工,活塞桿上工作表面的粗糙度為Ra=0.63μm,必要時鍍厚度為0.05mm的鉻,然后拋光。</p><p> 6.3.5 液壓缸的緩沖裝置</p><p&
112、gt; 緩沖裝置是為了防止或減小液壓缸活塞在運動到兩個端點時因慣性力造成的沖撞。液壓缸的活塞桿具有一定的質(zhì)量,在液壓力的驅(qū)動下運動時具有很大的動量,在它們的行程終端,當(dāng)桿頭進入液壓缸的端蓋和缸底部分時,會引起機械碰撞,產(chǎn)生很大的沖擊壓力和噪聲。因此就有必要采用緩沖裝置,以避免這種機械碰撞使缸體損壞,但沖擊壓力仍然存在,大約是額定工作壓力的兩倍,這就必然會嚴(yán)重影響液壓缸和整個液壓系統(tǒng)的強度和正常工作,緩沖裝置可以防止和減少液壓缸活塞及活
113、塞桿等運動部件在運動時對缸底或端蓋的沖擊,在它們的行程終端能實現(xiàn)速度的遞減,直至為零。通常是通過節(jié)流作用,使液壓缸運動到端點附近時形成足夠的內(nèi)壓,降低液壓缸的運動速度,以減小沖擊。其工作原理是使缸筒低壓腔內(nèi)油液全部或部分通過節(jié)流把動能轉(zhuǎn)化為熱能,熱能則由循環(huán)的油液帶到液壓缸外。</p><p> 本設(shè)計中采用的緩沖裝置是可變節(jié)流槽式的緩沖裝置。這種緩沖裝置是在緩沖柱塞上開由淺到深的三角節(jié)流溝槽,節(jié)流面積隨著緩沖
114、行程的增大而逐漸減少,緩沖壓力變化平緩。</p><p> 6.3.6 液壓缸的排氣裝置</p><p> 為使液壓缸運動穩(wěn)定,在新裝上液壓缸之后,必須將缸內(nèi)的空氣排出。排氣的方法之一是使液壓缸反復(fù)運動,直到運動平穩(wěn)。但更可靠的方法是在液壓缸上設(shè)置排氣塞(排氣閥),排氣塞的位置一般放置在液壓缸的端部,雙作用液壓缸則應(yīng)設(shè)置兩個排氣塞。如果排氣閥設(shè)置不當(dāng)或者沒有設(shè)置,壓力油進入液壓缸后,缸
115、內(nèi)仍會存在空氣,由于空氣具有壓縮性和滯后擴張性,會造成液壓缸和整個液壓系統(tǒng)在工作中的振動和爬行,影響液壓缸的正常工作。為了避免這種現(xiàn)象,除了防止空氣進入液壓系統(tǒng)外,必須在液壓缸上安設(shè)排氣閥,因為液壓缸是液壓系統(tǒng)的最后執(zhí)行元件,會直接反映出殘留空氣的危害。</p><p> 對于速度要求較高的液壓缸和大型液壓缸需要專門設(shè)置排氣裝置,如排氣塞、排氣閥等。對于要求不是很高的液壓缸,往往不需要設(shè)計專門的排氣裝置,而是將
116、油口布置在缸筒的最高處,這樣也能使空氣隨著油液排往油箱,再從油箱逸出。本設(shè)計采用后者。</p><p> 6.4 制定基本方案</p><p> 設(shè)計合理的液壓系統(tǒng)才能確保全面、可靠地實現(xiàn)設(shè)計任務(wù)書中規(guī)定的各項技術(shù)指標(biāo),通常做法是先選定系統(tǒng)類型,分別選擇各項要求的基本回路,最后再將各基本回路組合成完整的液壓系統(tǒng)。由于影響液壓系統(tǒng)方案的因素很多,設(shè)計中仍主要靠經(jīng)驗來完成。</p&g
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 曲軸搬運機械手畢業(yè)設(shè)計
- 曲軸搬運機械手畢業(yè)設(shè)計
- 曲軸搬運機械手畢業(yè)設(shè)計
- 畢業(yè)設(shè)計---曲軸搬運機械手設(shè)計
- 畢業(yè)設(shè)計_曲軸搬運機械手畢業(yè)設(shè)計
- 搬運機械手設(shè)計畢業(yè)設(shè)計
- 畢業(yè)設(shè)計---搬運機械手設(shè)計
- 搬運機械手設(shè)計畢業(yè)設(shè)計
- 畢業(yè)設(shè)計(論文)-搬運機械手設(shè)計
- 氣動搬運機械手——畢業(yè)設(shè)計論文
- 氣動搬運機械手——畢業(yè)設(shè)計論文
- 發(fā)動機曲軸搬運機械手設(shè)計
- 曲軸搬運機械手設(shè)計開題報告.doc
- 發(fā)動機曲軸搬運機械手設(shè)計
- 曲軸搬運機械手設(shè)計開題報告.doc
- 曲軸搬運上線機械手設(shè)計開題報告
- 曲軸搬運機械手設(shè)計【7張圖紙】【優(yōu)秀】
- 半導(dǎo)體芯片氣動搬運機械手設(shè)計畢業(yè)設(shè)計
- 曲軸搬運機械手的研究與設(shè)計.pdf
- 曲軸搬運機械手設(shè)計【7張圖紙】【優(yōu)秀】
評論
0/150
提交評論