版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、第4章神經(jīng)網(wǎng)絡(luò)工具箱函數(shù),,本章要點(diǎn)介紹神經(jīng)網(wǎng)絡(luò)工具箱中的通用函數(shù)用法介紹各類神經(jīng)網(wǎng)絡(luò)工具箱函數(shù)用法,,4.2 神經(jīng)網(wǎng)絡(luò)工具箱中的通用函數(shù)4.2.1 神經(jīng)網(wǎng)絡(luò)仿真函數(shù)神經(jīng)網(wǎng)絡(luò)仿真函數(shù)sim()功能:主要用于對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行仿真。調(diào)用格式: [Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T)[Y,Pf,Af,E,perf] = sim(net,{Q TS},Pi,Ai,T)[Y,Pf,Af,E,pe
2、rf] = sim(net,Q,Pi,Ai,T),,4.2.2神經(jīng)網(wǎng)絡(luò)訓(xùn)練及學(xué)習(xí)函數(shù)1. train()函數(shù)功能:用于對(duì)神經(jīng)網(wǎng)絡(luò)進(jìn)行訓(xùn)練。調(diào)用格式: [net,tr,Y,E,Pf,Af] = train(net,P,T,Pi,Ai)2. learnp()函數(shù)功能:用于神經(jīng)網(wǎng)絡(luò)權(quán)值和閾值的學(xué)習(xí)。調(diào)用格式:[dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) 3. learnpn
3、()函數(shù)功能:用于神經(jīng)網(wǎng)絡(luò)歸一化權(quán)值和閾值的學(xué)習(xí)。調(diào)用格式:[dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)info = learnpn(code),,4.2.3神經(jīng)網(wǎng)絡(luò)初始化函數(shù)1. init()函數(shù)功能:對(duì)神經(jīng)網(wǎng)絡(luò)的參數(shù)進(jìn)行初始化。調(diào)用格式:net = init(net) 2. initlay()函數(shù)功能:對(duì)層-層結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)的參數(shù)進(jìn)行初始化。調(diào)用格式:net =
4、 initlay(net) 3. initnw()函數(shù)功能:對(duì)一個(gè)層進(jìn)行初始化。調(diào)用格式:net = initnw(net,i),,4. initwb()函數(shù)功能:對(duì)一個(gè)層進(jìn)行初始化。調(diào)用格式:net = initwb(net,i) 5. revert()函數(shù)功能:將神經(jīng)網(wǎng)絡(luò)中的權(quán)值和閾值恢復(fù)為初始值。調(diào)用格式:net = revert(net),,4.2.4神經(jīng)網(wǎng)絡(luò)輸入函數(shù)1. netsum()函數(shù)功
5、能:對(duì)輸入求和。調(diào)用格式:N = netsum(Z1,Z2,...,Zn) 2. netprod()函數(shù)功能:對(duì)輸入數(shù)據(jù)求和。調(diào)用格式:N = netprod(Z1,Z2,...,Zn)info = netprod(code),,4.2.5神經(jīng)網(wǎng)絡(luò)傳遞函數(shù)1. hardlim()函數(shù)功能:硬限幅傳遞函數(shù)。調(diào)用格式:A = hardlim(N,FP) 2. hardlims()函數(shù) 功能:對(duì)稱硬限幅傳遞函數(shù)。
6、調(diào)用格式:A = hardlims(N,FP),4.3 感知器神經(jīng)網(wǎng)絡(luò)工具箱函數(shù),4.3.1 感知器神經(jīng)網(wǎng)絡(luò)創(chuàng)建函數(shù)newp()函數(shù)調(diào)用格式:net = newp(PR,S,TF,LF) 4.3.2 感知器神經(jīng)網(wǎng)絡(luò)顯示函數(shù)1. plotpc()函數(shù)功能:用于在感知器向量圖中繪制分界線。調(diào)用格式:plotpc(W,B)plotpc(W,B,H) 2. plotpv()函數(shù)功能:用于輸入向量和目標(biāo)向量繪制。調(diào)用
7、格式:plotpv(P,T)plotpv(P,T,V),,4.3.3 感知器神經(jīng)網(wǎng)絡(luò)性能函數(shù)mae()函數(shù)功能:用于計(jì)算輸出量和目標(biāo)量之間的平均絕對(duì)誤差。調(diào)用格式:perf = mae(E,Y,X,FP)dPerf_dy = mae('dy',E,Y,X,perf,FP)dPerf_dx = mae('dx',E,Y,X,perf,FP)info = mae(code),4.4 BP神經(jīng)網(wǎng)絡(luò)工具
8、箱函數(shù),4.4.1 BP神經(jīng)網(wǎng)絡(luò)創(chuàng)建函數(shù)1. newff()函數(shù)功能:創(chuàng)建一前饋BP網(wǎng)絡(luò)。調(diào)用格式:net = newff(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF) 2. newcf()函數(shù)功能:創(chuàng)建一多層前饋BP網(wǎng)絡(luò)。調(diào)用格式:net = newcf(P,T,[S1 S2...S(N-l)],{TF1 TF2...TFN}, BTF,
9、BLF,PF,IPF,OPF,DDF) 3. newfftd()函數(shù)功能:創(chuàng)建一前饋輸入延遲BP網(wǎng)絡(luò)。調(diào)用格式:net = newfftd(P,T,ID,[S1 S2...S(N-l)],{TF1 TF2...TFNl}, BTF,BLF,PF,IPF,OPF,DDF),,4.4.2 BP神經(jīng)網(wǎng)絡(luò)傳遞函數(shù)1. purelin()函數(shù)功能:線性傳遞函數(shù)。調(diào)用格式:A = purelin(N,FP) 2. tansig
10、()函數(shù)功能:線性傳遞函數(shù)。調(diào)用格式:A = tansig(N,FP) 3. logsig()函數(shù)功能:對(duì)數(shù)S型傳遞函數(shù)。調(diào)用格式:A = logsig(N,FP),,4.4.3 BP神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)函數(shù)1. learngd()函數(shù)功能:梯度下降學(xué)習(xí)函數(shù)。調(diào)用格式:[dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)[db,LS] = learngd(b,ones(1,Q),Z
11、,N,A,T,E,gW,gA,D,LP,LS) 2. learngdm()函數(shù)功能:梯度下降動(dòng)量學(xué)習(xí)函數(shù)。調(diào)用格式:[dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)[db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS),4.4.4 BP神經(jīng)網(wǎng)絡(luò)訓(xùn)練函數(shù)1. trainbfg()函數(shù)功能:準(zhǔn)牛頓BP算法函數(shù)。調(diào)用格式:[
12、net,TR] = trainbfg(net,TR,trainV,valV,testV) 2. traingd()函數(shù)功能:梯度下降的BP算法訓(xùn)練函數(shù)。調(diào)用格式:[net,TR] = traingd(net,TR,trainV,valV,testV) 3. traingdm()函數(shù)功能:梯度下降動(dòng)量的BP算法訓(xùn)練函。調(diào)用格式:[net,TR] = traingdm(net,TR,trainV,valV,testV),
13、4.4.5 BP神經(jīng)網(wǎng)絡(luò)性能函數(shù)1. mse()函數(shù)功能:計(jì)算均方誤差。調(diào)用格式:perf = mse(E,Y,X,FP)dPerf_dy = mse('dy',E,Y,X,perf,FP)dPerf_dx = mse('dx',E,Y,X,perf,FP) 2. msereg()函數(shù)功能:加權(quán)均方誤差函數(shù)。調(diào)用格式:perf = msereg(E,Y,X,FP)dPerf_dy = m
14、sereg('dy',E,Y,X,perf,FP)dPerf_dx = msereg('dx',E,Y,X,perf,FP),4.4.6 BP神經(jīng)網(wǎng)絡(luò)顯示函數(shù)1. plotperf()函數(shù)功能:用于繪制網(wǎng)絡(luò)性能。調(diào)用格式:plotperf(TR,goal,name,epoch) 2. plotes()函數(shù)功能:用于繪制單獨(dú)神經(jīng)元的誤差曲面。調(diào)用格式:plotes(WV,BV,ES,V)
15、 3. plotep()函數(shù)功能:用于繪制權(quán)值和閾值在誤差曲面上的位置。調(diào)用格式:h= plotep(W,B,E)h= plotep(W,B,E,H) 4. errsurf()函數(shù)功能:用于計(jì)算單個(gè)神經(jīng)元的誤差曲面。調(diào)用格式:errsurf(P,T,WV,BV,F),4.5.1 線性神經(jīng)網(wǎng)絡(luò)創(chuàng)建函數(shù)和設(shè)計(jì)函數(shù)1. newlin()函數(shù)功能:用于創(chuàng)建一線性層。調(diào)用格式:net = newlin(P,S,ID,
16、LR) newlind()函數(shù)功能:用于設(shè)計(jì)一線性層。調(diào)用格式:net = newlind(P,T,Pi),4.5 線性神經(jīng)網(wǎng)絡(luò)工具箱函數(shù),4.5.2 學(xué)習(xí)函數(shù)1. learnwh()函數(shù)功能:Widrow_Hoff學(xué)習(xí)規(guī)則,實(shí)現(xiàn)輸出誤差的平方和最小功能。調(diào)用格式:[dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)[db,LS] = learnwh(b,ones(1,Q),Z,
17、N,A,T,E,gW,gA,D,LP,LS) 2. maxlinlr()函數(shù)功能:計(jì)算線性層的最大學(xué)習(xí)速率。調(diào)用格式:lr = maxlinlr(P)lr = maxlinlr(P,'bias'),4.6.1 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)創(chuàng)建函數(shù)1. newc()函數(shù)功能:創(chuàng)建競(jìng)爭(zhēng)層。調(diào)用格式:net = newc(PR,S,KLR,CLR) newsom()函數(shù)功能:創(chuàng)建一自組織特征映射。調(diào)用格式:
18、net = newsom(P,[D1,D2,...],TFCN,DFCN,STEPS,IN) newlvq()函數(shù)功能:創(chuàng)建學(xué)習(xí)向量化LVQ網(wǎng)絡(luò)。調(diào)用格式:net = newlvq(PR,S1,PC,LR,LF),4.6 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)工具箱函數(shù),4.6.2 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)傳遞函數(shù)1. compet()函數(shù)功能:競(jìng)爭(zhēng)性傳遞函數(shù)。調(diào)用格式:A = compet(N,FP) 2. softmax()函數(shù)功能:軟最
19、大傳遞函數(shù)。調(diào)用格式:A = softmax(N,FP)4.6.3 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)距離函數(shù)1. boxdist()函數(shù)功能:box距離函數(shù)。調(diào)用格式:d = boxdist(pos),2. dist()函數(shù) 功能:歐氏距離權(quán)函數(shù)。調(diào)用格式:Z = dist(W,P,FP)D = dist(pos)3. linkdist()函數(shù)功能:鏈接距離函數(shù)。調(diào)用格式:d = linkdist(pos) 4. man
20、dist()函數(shù) 功能:Manhattan距離權(quán)函數(shù)。調(diào)用格式:Z = mandist(W,P)D = mandist(pos),4.6.4 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)函數(shù)1. learnk()函數(shù)功能:Kohonen權(quán)值學(xué)習(xí)函數(shù)。調(diào)用格式:[dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) 2. learnsom()函數(shù)功能:自組織映射權(quán)值學(xué)習(xí)函數(shù)。調(diào)用格式:[dW,LS] = l
21、earnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) 3. learnis()函數(shù) 功能:instar權(quán)值學(xué)習(xí)函數(shù)。調(diào)用格式:[dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS),4. learnos()函數(shù)功能:outstar權(quán)值學(xué)習(xí)函數(shù)。調(diào)用格式: [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)4.6.5 自組織競(jìng)
22、爭(zhēng)神經(jīng)網(wǎng)絡(luò)初始化函數(shù)midpoint()函數(shù)功能:將權(quán)值初始化為輸入向量值域中心的函數(shù)。調(diào)用格式: W = midpoint(S,PR)4.6.6 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)權(quán)值函數(shù)negdist()函數(shù)功能:負(fù)距離權(quán)值函數(shù)。調(diào)用格式: Z = negdist(W,P,FP),4.6.7 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)顯示函數(shù)poltsom()函數(shù)功能:繪制自組織特征映射的函數(shù)。調(diào)用格式: plotsom(pos)plotsom(W,
23、D,ND)4.6.8 自組織競(jìng)爭(zhēng)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)函數(shù)1. hextop()函數(shù)功能:實(shí)現(xiàn)六角層拓?fù)浜瘮?shù)。調(diào)用格式:pos = hextop(dim1,dim2,...,dimN) 2. gridtop()函數(shù) 功能:實(shí)現(xiàn)網(wǎng)格層拓?fù)浜瘮?shù)。調(diào)用格式:pos = gridtop(dim1,dim2,...,dimN),4.7.1 徑向基神經(jīng)網(wǎng)創(chuàng)建函數(shù)1. newrb()函數(shù)功能:創(chuàng)建徑向基網(wǎng)絡(luò)。調(diào)用格式: [net,tr]
24、 = newrb(P,T,goal,spread,MN,DF)2. newrbe()函數(shù)功能:設(shè)計(jì)準(zhǔn)確的徑向基網(wǎng)絡(luò)。調(diào)用格式:net = newrbe(P,T,spread) 3. newpnn()函數(shù)功能:創(chuàng)建概率徑向基網(wǎng)絡(luò)。調(diào)用格式:net = newpnn(P,T,spread) 4. newgrnn()函數(shù)功能:設(shè)計(jì)廣義回歸徑向基網(wǎng)絡(luò)。調(diào)用格式:net = newgrnn(P,T,spread),4.7 徑向
25、基神經(jīng)網(wǎng)絡(luò)工具箱函數(shù),4.7.2 徑向基神經(jīng)網(wǎng)轉(zhuǎn)換函數(shù)1. ind2vec()函數(shù)功能:將數(shù)據(jù)索引轉(zhuǎn)換為向量組。調(diào)用格式:vec = ind2vec(ind) 2. vec2ind()函數(shù)功能:將向量組轉(zhuǎn)換為數(shù)據(jù)索引。調(diào)用格式:ind = vec2ind(vec) 4.7.3 徑向基神經(jīng)網(wǎng)傳遞函數(shù)radbas()函數(shù)功能:將數(shù)據(jù)索引轉(zhuǎn)換為向量組。調(diào)用格式: A = radbas(N,FP)info = radb
26、as(code),4.8.1 Hopfield網(wǎng)絡(luò)的工具箱函數(shù)1. newhop()函數(shù)功能:用于設(shè)計(jì)一個(gè)Hopfield反饋網(wǎng)絡(luò)調(diào)用格式:net=newhopnet=newhop(T)2. satlins()函數(shù)功能:用于Hopfield網(wǎng)絡(luò)的飽和線性傳遞函數(shù)。調(diào)用格式:A=satlins(N)4.8.2 Elman網(wǎng)絡(luò)的工具箱函數(shù)newelm()函數(shù)功能:用于設(shè)計(jì)一個(gè)Elman反饋網(wǎng)絡(luò)。調(diào)用格式:net=
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 神經(jīng)網(wǎng)絡(luò)工具箱的使用
- 不錯(cuò)的matlab神經(jīng)網(wǎng)絡(luò)工具箱實(shí)用指南
- 3 matlab神經(jīng)網(wǎng)絡(luò)工具箱中的網(wǎng)絡(luò)對(duì)象及其屬性
- 人工神經(jīng)網(wǎng)絡(luò)matlab工具箱概要
- 如何使用貝葉斯網(wǎng)絡(luò)工具箱
- bp神經(jīng)網(wǎng)絡(luò)實(shí)例與工具箱應(yīng)用
- 工具箱函數(shù)匯總
- matlab 工具箱函數(shù)
- matlab工具箱函數(shù)匯總
- matlab工具箱函數(shù)匯總
- 第24章圖像處理工具箱
- EI軟件開(kāi)發(fā)平臺(tái)中網(wǎng)絡(luò)工具箱的設(shè)計(jì)與實(shí)現(xiàn).pdf
- matlab統(tǒng)計(jì)工具箱函數(shù)大全
- matlab工具箱函數(shù)匯總表
- ps工具箱
- photoshop工具箱
- 工具箱詳解
- 木質(zhì)工具箱
- 網(wǎng)絡(luò)管理員工具箱
- 木質(zhì)工具箱
評(píng)論
0/150
提交評(píng)論