

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
1、第十一章全等三角形復習一、全等三角形能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉(zhuǎn)可以得到它的全等形。2、全等三角形有哪些性質(zhì)(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。3、全等三角形的判定邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SSS”)邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成“SAS
2、”)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“ASA”)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“AAS”)斜邊.直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“HL”)4、證明兩個三角形全等的基本思路:方法指引證明兩個三角形全等的基本思路:(1):已知兩邊找第三邊(SSS)找夾角(SAS)(2):已知一邊一角已知一邊和它的鄰角找是否有直角(HL)已知一邊和它的對角找這邊的另一個鄰
3、角(ASA)找這個角的另一個邊(SAS)找這邊的對角(AAS)找一角(AAS)已知角是直角,找一邊(HL)(3):已知兩角找兩角的夾邊(ASA)找夾邊外的任意邊(AAS)練習二、角的平分線:1、(性質(zhì))角的平分線上的點到角的兩邊的距離相等.2、(判定)角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。三、學習全等三角形應注意以下幾個問題:(1):要正確區(qū)分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;(2):表示兩個三角形全等時,
4、表示對應頂點的字母要寫在對應的位置上;(3):“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;(4):時刻注意圖形中的隱含條件,如“公共角”、“公共邊”、“對頂角”第十二章軸對稱一、軸對稱圖形1.把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。2.把一個圖形沿著某一條直線折疊,如果它能與另一個圖
5、形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點叫做對稱點3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系軸對稱圖形軸對稱區(qū)別聯(lián)系圖形(1)軸對稱圖形是指()具有特殊形狀的圖形只對()圖形而言(2)對稱軸()只有一條(1)軸對稱是指()圖形的位置關系必須涉及()圖形(2)只有()對稱軸.如果把軸對稱圖形沿對稱軸分成兩部分那么這兩個圖形就關于這條直線成軸對稱.如果把兩個成軸對稱的
6、圖形拼在一起看成一個整體那么它就是一個軸對稱圖形.BCACBAABC一個一個不一定兩個兩個一條知識回顧:4.軸對稱的性質(zhì)①關于某直線對稱的兩個圖形是全等形。②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。二、線段的垂直平分線1.經(jīng)過線段中點并且垂直于這條線段的直線,叫做
7、這條線段的垂直平分線,也叫中垂線。2.線段垂直平分線上的點與這條線段的兩個端點的距離相等3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上三、用坐標表示軸對稱小結(jié):在平面直角坐標系中,關于x軸對稱的點橫坐標相等縱坐標互為相反數(shù).關于y軸對稱的點橫坐標互為相反數(shù)縱坐標相等.點(xy)關于x軸對稱的點的坐標為______.點(xy)關于y軸對稱的點的坐標為______.2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距
8、離相等四、(等腰三角形)知識點回顧三、函數(shù)中自變量取值范圍的求法:(1).用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一切實數(shù)。(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。(5)對于與實際問題有
9、關系的,自變量的取值范圍應使實際問題有意義。四、函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么在坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象五、用描點法畫函數(shù)的圖象的一般步驟1、列表(表中給出一些自變量的值及其對應的函數(shù)值。)注意:列表時自變量由小到大,相差一樣,有時需對稱。2、描點:(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點。3、連線:(
10、按照橫坐標由小到大的順序把所描的各點用平滑的曲線連接起來)。六、函數(shù)有三種表示形式:(1)列表法(2)圖像法(3)解析式法七、正比例函數(shù)與一次函數(shù)的概念:一般地,形如y=kx(k為常數(shù),且k≠0)的函數(shù)叫做正比例函數(shù).其中k叫做比例系數(shù)。一般地,形如y=kxb(kb為常數(shù),且k≠0)的函數(shù)叫做一次函數(shù).當b=0時y=kxb即為y=kx所以正比例函數(shù),是一次函數(shù)的特例.八、正比例函數(shù)的圖象與性質(zhì):(1)圖象:正比例函數(shù)y=kx(k是常數(shù),
11、k≠0))的圖象是經(jīng)過原點的一條直線,我們稱它為直線y=kx。(2)性質(zhì):當k0時直線y=kx經(jīng)過第三,一象限,從左向右上升,即隨著x的增大y也增大;當k0,b>0;(2)k0,b<0;(3)k0,b=0(4)k<0,b>0;(5)k<0,b<0(6)k<0,b=0一次函數(shù)表達式的確定求一次函數(shù)y=kxb(k、b是常數(shù),k≠0)時,需要由兩個點來確定;求正比例函數(shù)y=kx(k≠0)時,只需一個點即可.5.一次函數(shù)與二元一次方程組:解方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論