版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1Unit1MathematicsPartIESTReadingReading1(article.cfmid=whatisrussellsparadoxSectionAPrereadingTaskWarmupQuestions:Wkinpairsdiscussthefollowingquestions.1.WhoisBertrRussellBertrArthurWilliamRussell(b.1872–d.1970)wasaBriti
2、shphilosopherlogicianessayistsocialcriticbestknownfhiswkinmathematicallogicanalyticphilosophy.Hismostinfluentialcontributionsincludehisdefenseoflogicism(theviewthatmathematicsisinsomeimptantsensereducibletologic)hisrefin
3、ingofthepredicatecalculusintroducedbyGottlobFrege(whichstillfmsthebasisofmostcontemparylogic)hisdefenseofneutralmonism(theviewthatthewldconsistsofjustonetypeofsubstancethatisneitherexclusivelymentalnexclusivelyphysical)h
4、istheiesofdefinitedeionslogicalatomism.Russellisgenerallyrecognizedasoneofthefoundersofmodernanalyticphilosophyisregularlycreditedwithbeingoneofthemostimptantlogiciansofthetwentiethcentury.2.WhatisRussell’sParadoxRussell
5、discoveredtheparadoxthatbearshisnamein1901whilewkingonhisPrinciplesofMathematics(1903).Theparadoxarisesinconnectionwiththesetofallsetsthatarenotmembersofthemselves.Suchasetifitexistswillbeamemberofitselfifonlyifitisnotam
6、emberofitself.Theparadoxissignificantsinceusingclassicallogicallsentencesareentailedbyacontradiction.Russellsdiscoverythuspromptedalargeamountofwkinlogicsettheythephilosophyfoundationsofmathematics.3.WhateffectdidRussell
7、’sParadoxhaveonGottlobFregg’ssystemAtfirstFregeobservedthattheconsequencesofRussell’sparadoxarenotimmediatelyclear.Fexample“Isitalwayspermissibletospeakoftheextensionofaconceptofaclassifnothowdowerecognizetheexceptionalc
8、asesCanwealwaysinferfromtheextensionofoneconcept’scoincidingwiththatofasecondthateveryobjectwhichfallsunderthefirstconceptalsofallsunderthesecondBecauseofthesekindsofwriesFregeeventuallyfeltfcedtoabonmanyofhisviews.4.Wha
9、tisRussell’sresponsetotheparadoxRussellsownresponsetotheparadoxcamewiththedevelopmentofhistheyoftypesin1903.ItwascleartoRussellthatsomerestrictionsneededtobeplacedupontheiginalcomprehension(abstraction)axiomofnaivesetthe
10、ytheaxiomthatfmalizestheintuitionthatanycoherentconditionmaybeusedtodetermineaset(class).Russellsbasic3Part2(Paras.25):TheeffectofRussell’sparadoxonGottlobFrege’ssystem.Para.2:Russell’sparadoxdealtaheavyblowtoFrege’satte
11、mptstodevelopafoundationfallofmathematicsusingsymboliclogic.Para.3:AnillustrationofRussell’sparadoxintermsofsetsPara.4:Contradictionfoundintheset.Para.5:FregenoticedthedevastatingeffectofRussell’sparadoxonhissysteminabil
12、itytosolveit.Part3(Paras.68):SolutionsofferedbymathematicianstoRussel’sparadoxPara.6:Russell’sownresponsetotheparadoxwithhis“theyoftypes.“Para.7:ZermelossolutiontoRussellsparadoxPara.8:Whatbecameoftheeffttodevelopalogica
13、lfoundationfallofmathematicsPart4(Para.9):CrespondencebetweenRussellFregeontheparadox2.Directions:Wkinpairsdiscussthefollowingquestions.1)WhatisthebasicideaofRussell’sparadox2)HowtoexplainRussell’sparadoxintermsofsets3)C
14、anyouexplainthecontradictionfoundinthesetsrelatedtoRussell’sparadox4)IsRussell’sownresponsetotheparadoxwkable5)DoyouknowZermeloFraenkelsetthey(open)3.Directions:Readthefollowingpassagecarefullyfillintheblankswiththewdsyo
15、u’velearnedinthetext.Russellsownresponsetotheparadoxcamewiththedevelopmentofhistheyoftypesin1903.ItwascleartoRussellthatsomerestrictionsneededtobeplacedupontheiginalcomprehension(abstraction)axiomofnaivesettheytheaxiomth
16、atfmalizestheintuitionthatanycoherentconditionmaybeusedtodetermineaset(class).Russellsbasicideawasthatreferencetosetssuchasthesetofallsetsthatarenotmembersofthemselvescouldbeavoidedbyarrangingallsentencesintoahierarchybe
17、ginningwithsentencesaboutindividualsatthelowestlevelsentencesaboutsetsofindividualsatthenextlowestlevelsentencesaboutsetsofsetsofindividualsatthenextlowestlevelsoon.Usingaviciouscircleprinciplesimilartothatadoptedbythema
18、thematicianHenriPoincarhisownsocalled“noclass“theyofclassesRussellwasabletoexplainwhytheunrestrictedcomprehensionaxiomfails:propositionalfunctionssuchasthefunction“xisaset“maynotbeappliedtothemselvessinceselfapplicationw
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技英語(yǔ)閱讀課后練習(xí)答案
- 小學(xué)英語(yǔ)過(guò)去式練習(xí)匯總附答案
- 2022年電子科技大學(xué)自考英語(yǔ)(二)練習(xí)題匯總(附答案解析)
- 小學(xué)英語(yǔ)時(shí)態(tài)匯總及練習(xí)
- 秦荻輝科技英語(yǔ)寫(xiě)作教程練習(xí)答案全部版
- 科技英語(yǔ)閱讀答案
- 英語(yǔ)練習(xí)答案
- 小學(xué)英語(yǔ)專項(xiàng)練習(xí)題匯總
- 英語(yǔ)練習(xí)及答案
- 2022年石河子大學(xué)科技學(xué)院自考英語(yǔ)(二)練習(xí)題匯總(附答案解析)
- 科技英語(yǔ)翻譯練習(xí)200句
- 課后練習(xí)及答案匯總
- 思考與練習(xí)答案預(yù)測(cè)匯總
- 科技英語(yǔ)翻譯答案
- 水滸傳練習(xí)及答案匯總
- c語(yǔ)言上機(jī)練習(xí)匯總及答案
- 科目匯總表練習(xí)及答案
- 電機(jī)學(xué)隨堂練習(xí)答案匯總
- 科技英語(yǔ)翻譯 課后答案
- 國(guó)際貿(mào)易練習(xí)題答案匯總
評(píng)論
0/150
提交評(píng)論