

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、,全球半導(dǎo)體晶體生長(zhǎng)建模著名商業(yè)軟件FEMAGNumerical Simulationof Bulk Crystal Growthfor Industrial Application,François Dupret1,2, Roman Rolinsky2, Brieuc Delsaute2, Rajesh Ramaya2, Nathalie Van den Bogaert2 1 Université ca
2、tholique de Louvain, Louvain-la-Neuve, Belgium 2 FEMAGSoft S.A. company, Louvain-la-Neuve, Belgium,,FEMAGSoft © 2013,How to improve the growth process in terms of: crystal quality ? process yield ?
3、 energy consumption ? production rate ?,Introduction,Main difficulties:,,FEMAGSoft © 2013,Multi-physics: heat and mass transport in the melt and the gas, turbulence, radiation transfer, etc., all interact and stron
4、gly affect species incorporation and defect formation in the crystal,Multiple space scales: sharp diffusive, viscous, radiative and thermal boundary layers are present in the melt and the gas, together with complex defec
5、t boundary layers in the crystal,Multiple time scales: typically the growth process is very slow while the melt flow is governed by much shorter time constants,Introduction (cont’d),FEMAGSoft © 2013,Solving these pr
6、oblems requires …,To resort to appropriate and up-to-date numerical simulation techniques to couple and solve these models→ quasi-steady and dynamic models,To develop a sound physical model for each separate effect→ gl
7、obal and time-dependent modeling of heat transfer, turbulence modeling, defect modeling, …,,Introduction (cont’d),,FEMAGSoft © 2013,Principal objective has been to complete the platform,FEMAG-2 → FEMAG-3 software ge
8、neration transition taking place from 2008-2009,General objective of FEMAGSoft,→ strongly improved platform in terms of computation time, memory, etc.,Introduction (cont’d),FEMAGSoft © 2013,b) Time-dependent modelin
9、g: use of various simulation modes(ex: quasi-steady, quasi-dynamic, inverse or direct dynamic models in Cz growth),c) FEM discretization: use of 2D, Spectral 3D, Cartesian 3D,… models(high geometrical flexibility, si
10、mple assembling technique),a) Global modeling: subdivision of the furnace into “macro-elements”(solid or liquid constituents, radiation enclosures, “cement” elements...),d) Geometrical modeling: to accurately handle st
11、rongly deforming bodies and interface and well-capture all the boundary layers,e) Solution technique: coupled Newton-Raphson iterations by use of a highly effective linear solver,,Introduction (cont’d),FEMAG software dev
12、elopment strategy,1. Numerical strategy,,FEMAGSoft © 2013,Numerical strategy,FEMAGSoft © 2013,Quasi-steadythermal equilibriumadapted heater power to get the prescribed crystal diameterheat source on the soli
13、dification front in proportion to the pull rate,Inverse dynamicadapted heater power to grow the prescribed crystal shapeeffect of pull rate and solid-liquid interface deformation on the solidification heat,Direct dynam
14、iccalculated crystal shapeprecribed heater power historyeffect of pull rate and solid-liquid interface deformation on the solidification heat,Time dependent,Quasi-steady,Quasi-dynamicfrozen geometry (except the solid
15、-liquid interface)adapted heater power to get the prescribed crystal diametereffect of pull rate and solid-liquid interface deformation on the solidification heat,Different simulation modes,1. Numerical strategy (cont’
16、d),,,Global temperaturefield,Streamfunction,FEMAGSoft © 2013,Inverse QS and TD simulation of the growth of a 300 mm silicon crystal,Analysis of conical growthand shouldering stagesm = 8.225 10-4 kg/m.sWc= 3.82
17、rpm (0.4 s-1)Ws= -3.82 rpm (-0.4 s-1)Vpul = 1.8 cm/h (5. 10-6 m/s),1. Numerical strategy (cont’d),,FEMAGSoft © 2013,Temperaturefield,Streamfunction,1. Numerical strategy (cont’d),,FEMAGSoft © 2013,FEMAG-1 t
18、ime-dependent simulation of Czochralski Ge growth,Inverse dynamic simulation (imposed crystal shape, calculated heater power): power oscillations resulting from inverse modeling, and smoothed power,1. Numerical strategy
19、(cont’d),,FEMAGSoft © 2013,Direct dynamic simulation (imposed stepwise decrease of heater power, calculated crystal shape): evolution of the temperature field,FEMAG-1 time-dependent simulation of Czochralski Ge grow
20、th,1. Numerical strategy (cont’d),,Inverse dynamicoften more reliable than quasi-steady modelhighly attractive to predict crystal quality,Quasi-steadyfrequently usedcheap, but not always validdoes not allow crystal
21、quality prediction,Direct dynamicsimulation of the system response to perturbations of the input parametersvery useful for controller design,Quasi-dynamicmay capture the detailed system dynamics at various stagesvery
22、 useful for controller design,FEMAGSoft © 2013,Different simulation techniques,1. Numerical strategy (cont’d),,,Typical FEMAG-CZ global unstructured mesh,FEMAGSoft © 2013,,Heat shield,,components,1. Numerical s
23、trategy (cont’d),FEMAG-CZ global unstructured mesh deformation,FEMAGSoft © 2013,1. Numerical strategy (cont’d),,,Detail,FEMAGSoft © 2013,1. Numerical strategy (cont’d),,Use of special CAGD techniques for menisc
24、us calculation during tail-end stage : Secondary mesh (constraining loci) and deformed melt- crystal and melt-gas interfaces (right) Generated 1D and 2D meshes (left),FEMAGSoft © 2013,1. Numerical strategy (con
25、t’d),,Smooth effect of remeshing,FEMAGSoft © 2013,1. Numerical strategy (cont’d),,,,,,,,,,,,,,,,,,t0,t1,t2,t3,t4,t5,t6,time,,,t7,,,Cone growth,Body growth,Tail-end stage,Mesh re-generation,Mesh deformation,Mesh gene
26、ration,,,,,General geometrical strategy,,FEMAGSoft © 2013,1. Numerical strategy (cont’d),,FEMAGSoft © 2013,The FEMAG-3 platform,FEMAG-1,FEMAG-2,FEMAG-3,1990,2008,1984,1. Numerical strategy (cont’d),,,FEMAGSoft
27、© 2013,Well-organized architecture:,Transition from previous FEMAG-2 generation almost complete,Very fast solver (favourably competes with existing open source software),Basic features,1. Numerical strategy (cont’d)
28、,-Level 0: basic linear algebra operations (LAM),-Level 1: advanced linear algebra,-Level 2: Finite Element discretization modules,-Level 3: geometrical modules,-Level 4: non-linear solver,-Level 5: time-dependent
29、solver,- considerable saving of computer resources (computer time, memory, etc.).,,FEMAGSoft © 2013,As a result:,- considerable saving of development time.,1. Numerical strategy (cont’d),Global Simulation of Czochra
30、lski Silicon Growth under the Effectof a Transverse Magnetic Field,FEMAGSoft © 2013,,2. Cz Si growth under a TMF,,MHD boundary layers: Hartmann layers,,FEMAGSoft © 2013,The Hartmann layers develop along the su
31、rfaces where the normal component of the magnetic field is non-negligible.,An order of magnitude of the thickness of a Hartmann layer is dH = L Ha-1 (L = Rs or Rc).Typically dH = 0.05 - 0.08 mm in industrial fu
32、rnaces.,,2. Cz Si growth under a TMF (cont’d),,Transverse magnetic fields:FLET method,Method: Fourier decomposition of all fields (velocity, pressure, temperature),Hypothesis:,Principal issue: which and how many modes
33、?,Objective: global, quasi-steady or time-dependentcalculations at a reasonable cost,,,,FEMAGSoft © 2013,,2. Cz Si growth under a TMF (cont’d),Fourier Limited Expansion Technique (FLET),FEMAGSoft © 2013,The
34、field variables are expanded as Fourier series in the azimuthal (q) direction:,,2. Cz Si growth under a TMF (cont’d),Fourier Limited Expansion Technique (FLET),FEMAGSoft © 2013,and while the number of modes M is a
35、s small as possible without loss of accuracy (spectral convergence).,,while the different mode coefficients:,are 2D Finite Element functions of the meridional coordinates (r, z),,,,This results in a system whose size is
36、 that of the 2D system multiplied by the number of Fourier modes considered and hence in a dramatic system size reduction.,2. Cz Si growth under a TMF (cont’d),,FEMAGSoft © 2013,Radiation transfer,Coupling between 3
37、D and 2D axisymmetric heat transfer across a radiative enclosure,the viewed and hidden parts are calculated as axisymmetric or, equivalently, each surface of the enclosure is viewed as axisymmetric from the other surf
38、aces,Main modeling hypothesis:,,generally 3D components are rotating with respect to the 2D environment 3D components mostly view 2D components because of the presence of heat shields,This hypothesis is satisfactory
39、 because:,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,Flow and global heat transfer in a silicon Cz pullerunder the effect of a TMF(quasi-steady simulation),,2. Cz Si growth under a TMF (cont’d),FEMAGSo
40、ft © 2013,Top: top view of the velocity magnitude and streamlines.Bottom: velocity field magnitude and cross-section showing a sharp Hartmann layer along the melt-crucible interface.,Growth of a 300 mm diameter S
41、i crystal under the effect of a 0.5 T TMF.,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,In a typical TMF configuration extremely thin Hartmann layersof 50-80 mm develop,Growth of a 300 mm diameter Si
42、 crystal under the effect of a 0.5 T TMF.,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,Detail of the deforming Boundary Layer Mesh (BLM) used,Flow and global heat transfer in a silicon Cz pullerunder th
43、e effect of a TMF,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,Hartmann boundary layers along the melt-crystal and melt-crucible interfaces and associated boundary layer meshes.Strong Hartmann backflows
44、develop.,Growth of a 300 mm diameter Si crystal under the effect of a 0.5 T TMF.,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,2. Cz Si growth under a TMF (cont’d),Czochralski growth of a silicon crysta
45、lunder a 500 mT horizontal magnetic field,Global simulation the growth of 300 mm and 400 mm crystals,FEMAGSoft © 2013,,2. Cz Si growth under a TMF (cont’d),Growth of a 300 mm crystal under a 500 mT TMF,Le
46、ft: melt surfaceRight: meridional cross-sections parallel and perpendicular to the magnetic field,Top: velocity fieldBottom: temperature field,FEMAGSoft © 2013,,2. Cz Si growth under a TMF (cont’d),Growth
47、of a 400 mm crystal under a 500 mT TMF,Left: melt surfaceRight: meridional cross-sections parallel and perpendicular to the magnetic field,Top: velocity fieldBottom: temperature field,FEMAGSoft © 2013,
48、,Czochralski growth of a silicon crystalunder a 3000 or 5000 G horizontal magnetic field,Global simulation of the growth of 300 mm and 400 mm crystals,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Ge
49、ometry and operating conditions,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Description of the simulations,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Crystal diameter: 400 mmPulling rate
50、: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,Temperature field (K): top left: parallel cross section;bottom left: perpendicular cross section;
51、top right: top view,Case 1,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Case 1,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic fiel
52、d strength: 3000 GGas flow: no,Velocity field (m.s-1): top left: parallel cross section;bottom left: perpendicular cross section,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,,Case 1,Crystal diameter: 400
53、 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,Oxygen concentration (m-3): top left: parallel cross section in melt;bottom left:
54、perpendicular cross section in melt; top right: crystal,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Case 2,Crystal diameter: 300 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field t
55、ype: horizontalMagnetic field strength: 3000 GGas flow: no,,,Temperature field (K): top left: parallel cross section;bottom left: perpendicular cross section,,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013
56、,,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,Temperature field (K): top left: parallel cross section;bot
57、tom left: perpendicular cross section,Case 1,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Velocity field (m.s-1): top left: parallel cross section;bottom left: perpendicular cross section,Case 2,Crystal d
58、iameter: 300 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Case 1,Crys
59、tal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,Velocity field (m.s-1): top left: parallel cross section;bottom l
60、eft: perpendicular cross section,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Oxygen concentration (m-3): top left: parallel cross section in melt;bottom left: perpendicular cross section in melt; top rig
61、ht: crystal,Case 2,,Crystal diameter: 300 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,2. Cz Si growth under a TMF (cont’d),FEMAG
62、Soft © 2013,,,Case 1,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flow: no,Oxygen concentration (m-3): top left
63、: parallel cross section in melt;bottom left: perpendicular cross section in melt; top right: crystal,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCruci
64、ble rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 5000 GGas flow: no,Temperature field (K): top left: parallel cross section;bottom left: perpendicular cross section; top right: top view
65、,Case 3,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 3000 GGas flo
66、w: no,Temperature field (K): top left: parallel cross section;bottom left: perpendicular cross section; top right: top view,Case 1,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,,Velocity field (m.s-1): top
67、 left: parallel cross section;bottom left: perpendicular cross section,Case 3,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength: 500
68、0 GGas flow: no,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,Case 1,Crystal diameter: 400 mmPulling rate: 0.45 mm/minCrucible rotation rate: 5 RPMMagnetic field type: horizontalMagnetic field strength
69、: 3000 GGas flow: no,Velocity field (m.s-1): top left: parallel cross section;bottom left: perpendicular cross section,2. Cz Si growth under a TMF (cont’d),FEMAGSoft © 2013,,,Oxygen concentration (m-3): top left:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 微下拉法晶體生長(zhǎng)數(shù)值模擬.pdf
- 晶體生長(zhǎng)理論
- 微下拉法晶體生長(zhǎng)全局?jǐn)?shù)值模擬
- 提拉法晶體生長(zhǎng)全局?jǐn)?shù)值模擬.pdf
- 新型晶體生長(zhǎng)裝置與KDP晶體快速生長(zhǎng).pdf
- KDP晶體生長(zhǎng)動(dòng)力學(xué)的數(shù)值模擬研究.pdf
- 晶體生長(zhǎng)的動(dòng)力學(xué)模擬.pdf
- 半導(dǎo)體材料GaN和ZnO的制備,晶體生長(zhǎng)及表征.pdf
- 晶體生長(zhǎng)和缺陷 ppt課件
- 晶體生長(zhǎng)機(jī)理研究綜述
- Czochralski法晶體生長(zhǎng)建模與控制研究.pdf
- 摻In CdZnTe晶體生長(zhǎng)研究.pdf
- 晶體生長(zhǎng)的基本規(guī)律
- DAST晶體的原料合成與晶體生長(zhǎng).pdf
- 藍(lán)寶石晶體生長(zhǎng)工藝及設(shè)備性能分析.pdf
- 32742.adp晶體生長(zhǎng)工藝的研究與改進(jìn)
- DAST晶體生長(zhǎng)及機(jī)理研究.pdf
- 表面誘導(dǎo)NTO晶體生長(zhǎng)研究.pdf
- CZ法硅晶體生長(zhǎng)坩堝中熔體的數(shù)值模擬.pdf
- KBr晶體生長(zhǎng)與性能測(cè)試.pdf
評(píng)論
0/150
提交評(píng)論