版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、AppliedSoftComputing12(2012)453–461ContentslistsavailableatSciVerseScienceDirectAppliedSoftComputingjournalhomepage:www.elsevier.com/locate/asocAnovelmethodforautomaticmodulationrecognitionAtaollahEbrahimzadeShermeFacult
2、yofElectricalandComputerEngineering,BabolUniversityofTechnology,Babol,Irana r t i c l e i nf oArticlehistory:Received15September2009Receivedinrevisedform23December2010Accepted14August2011Availableonline30August2
3、011Keywords:ModulationrecognitionPatternrecognitionBeesAlgorithmHierarchicalsupportvectormachinebasedclassifierCombinationofthehigherordermoments(uptoeighth)andhigherordercumulants(uptoeighth)Spectralcharacteristicsab s
4、 t r a c tAutomaticrecognitionof the digitalmodulationplaysan importantrole in variousapplications.Thispaperinvestigatesthe designofan accuratesystemfor recognitionof digitalmodulations.First,itisintroducedan
5、 efficientpattern recognitionsystemthat includestwo mainmodules:the featureextractionmoduleand the classifiermodule.Feature extractionmoduleextractsa suitablecombinationof the higherordermomentsup to eighth,
6、higherorder cumulantsup to eighthand instantaneouscharacteristicsofdigitalmodulations.These combinationsofthe featuresare appliedfor the firsttimein this area.Intheclassifiermodule,two importantclassesof supe
7、rvisedclassifiers,i.e., multi-layerperceptron(MLP)neuralnetworkand hierarchicalmulti-classsupportvector machinebased classifierare investigated.Byexperimentalstudy, we choosethe best classifierfor recognitionof
8、 the consideredmodulations.Then,weproposea hybridheuristicrecognitionsystemthat an optimizationmodule is addedtoimprovethegeneralizationperformanceof the classifier.In thismodulewe have useda new optimizationa
9、lgorithmcalledBees Algorithm.This moduleoptimizesthe classifierdesignby searchingfor the best value of theparametersthat tuneits discriminantfunction,and upstreamby lookingfor the best subsetof featurest
10、hatfeed the classifier.Simulationresults show that the proposedhybridintelligenttechniquehasveryhighrecognitionaccuracyevenat low levels of SNR with a littlenumberof the features.©2011ElsevierB.V. All
11、 rightsreserved.1.IntroductionAutomaticmodulationrecognitionisatechniquethatrecog-nizesthetypeofthereceivedsignalatthereceiver.Itplaysanimportantroleinmilitaryandcivildomains.Forexample,inmil-itaryapplications,itcanbeemp
12、loyedforelectronicsurveillance,interferencerecognitionandmonitoring.Thewiderangeofcivil-ianapplicationsincludesspectrummanagement,networktrafficadministration,signalconfirmation,softwareradios,intelligentmodems,cognitive
13、radio,etc.Duetotheincreasingusageofdigi-talsignalsinnoveltechnologiessuchassoftwareradio,therecentresearcheshavebeenfocusedonidentifyingthesesignaltypes.Generally,digitalsignaltypeidentificationmethodsfallintotwomaincate
14、gories:decisiontheoretic(DT)methodsandpat-ternrecognition(PR)methods.DTmethodsuseprobabilisticandhypothesistestingargumentstoformulatetherecognitionprob-lem[1–3].ThemajordrawbacksofDTmethodsaretheirtoohighcomputationalco
15、mplexity,lackofrobustnesstothemodelmis-matchaswellascarefulanalysisthatarerequiredtosetthecorrectthresholdvalues[4]. PRmethods,however,donotneedsuchcarefultreatment.Theyareeasytoimplement.PRmethodscanbefurtherdividedint
16、womainsubsystems:thefeatureextractionsubsystemE-mailaddress:abrahamzadeh@gmail.comandtheclassifiersubsystem.Theformerextractsthefeatures(e.g.histograms,spectralcharacteristics,instantaneouscharacteristics,combinationofse
17、condandfourthordermoment,symmetry,etc.),andthelatterdeterminesthemembershipofsignal(e.g.neuralnetworks,K-nearestneighbor,fuzzylogicclassifier,etc.)[4–19].Fromthepublishedworks,itappearsclearthatinthedesignofasystemforaut
18、omaticrecognitionofdigitalsignaltype(modula-tion),therearesomeimportantissues,which,ifsuitablyaddressed,leadtothedevelopmentofmorerobustandefficientrecognizers.Oneoftheseissuesisrelatedtothechoiceoftheclassificationappro
19、achtobeadopted.Literaturereviewshowsthatdespiteitsgreatpotential,theapplicationofdifferentsupervisedclassifierhasnotreceivedtheattentionitdeservesinthemodulationclassifi-cation.Therefore,inthispaperweinvestigatedtheperfo
20、rmancesofmulti-layerperceptronneuralnetwork(MLP)[20],andsupportvectormachine(SVM)[21,22]. Inthispaper,we haveusedtheSVMsinthestructureoftheproposedhierarchicalclassifier.Choosingtherightfeaturesetisstillanotherissue.Int
21、hispaper,asuitablesetoftheinstantaneouscharacteristics,thehigherordermomentsuptoeighthandthehigherordercumulantsuptoeightharepro-posedastheeffectivefeatures.Turningbacktothedigitalsignalrecognitionsystems,itisfoundthat:(
22、1)featureselectionisnotperformedinacompletelyautomaticwayand(2)theselectionofthebestfreeparametersoftheadoptedclassifieraregenerallydoneempirically(modelselectionissue).Anotherissuethatisaddressedinthispaperisoptimizatio
23、n.Inthismodulewehaveusedanew1568-4946/$–seefrontmatter©2011ElsevierB.V.Allrightsreserved.doi:10.1016/j.asoc.2011.08.025A.E.Sherme/AppliedSoftComputing12(2012)453–461455wheremisthemeanoftherandomvariable.Thedefinitio
24、nfortheithmomentforafinitelengthdiscretesignalisgivenby:?i =N ?k=1(sk ?m)if(sk)(7)whereNisthedatalength.Inthisstudysignalsareassumedtobezeromean.Thus:?i =N ?k=1si kf(sk)(8)Next,theauto-momentoftherandomvariablemaybedefin
25、edasfollows:Mpq =E[sp?q(s?)q](9)wherepiscalledthemomentorderands* standsforcomplexconjugationofs.Assumeazero-meandiscretebased-bandsignalsequenceoftheformsk =ak +jbk.Usingthedefinitionoftheauto-moments,theexpressionsford
26、ifferentordersmaybeeasilyderived.Forexample:M83 =E[s5(s?)3]=E[(a+jb)5(a?jb)3]?M83 =E[(a5 +j5a4b+j210a3b2 +j310a2b3 +j45ab4 +j5b5)(a3 ?j3a2b+j23ab2 ?j3b3)]?M83 =E[a8 +j2a7b?j22a6b2 ?j36a5b3 +j560a3b5 +j62a2b6 ?j72ab7 ?j8b
27、8]?M83 =E[a8 +2a6b2 ?2a2b6 ?b8](10)Considerascalarzeromeanrandomvariableswithcharacter-isticfunction:? f(t)=E{ejts} (11)ExpandingthelogarithmofthecharacteristicfunctionasaTaylorseries,oneobtains:log ? f (t)=k1(jt)+·
28、··+ kr(jt)rr! +···(12)Theconstantskr in(12)arecalledthecumulants(ofthedistri-bution)ofs.Thesymbolismforpthorderofcumulantissimilartothatofthepthordermoment.Morespecially:Cpq =Cum[s,...,s ? ?? ?
29、(p?q)terms,s?,...,s? ? ?? ?(q)terms](13)Forexample:C81 =Cum(s,s,s,s,s,s,s,s?)(14)Thenthordercumulantisafunctionofthemomentsofordersupto(andincluding)n.Momentsmaybeexpressedintermsofcumulantsas:M[s1,..,sn]= ??vCum[{sj}j
30、∈ v1]...Cum[{sj}j ∈vq](15)wherethesummationindexisoverallpartitionsv=(v1,...,vq)forthesetofindexes(1,2,...,n),andqisthenumberofelementsinagivenpartition.Cumulantsmaybealsobederivedintermsofmoments:Cum[s1,...,sn]= ??v(?1
31、)q?1(q?1)!E???j∈v1sj?? ...E???j ∈vqsj??(16)wherethesummationisbeingperformedonallpartitionsv=(v1,...,vq)forthesetofindices(1,2,...,n).Wehavecomputedallofthehigherorderfeaturesforthedigitalcommunicationsignalsthatarecons
32、idered.Table1showsthesomeofthetheoreticalvaluesofthehigherorderstatisticsforanumberoftheconsidereddigitalsignaltypes.ThesevaluesarecomputedTable1Someofthehigherorderfeaturesforanumberoftheconsidereddigitalsignaltypes.PSK
33、2QAM16QAM64M41 100M61 1 ?1.32?1.3M84 13.133.9C61 162.081.797C80 ?244?13.99?11.5C84 ?24417.380undertheconstraintofunitvarianceinnoisefreeandnormalizedbytheoreticalsignalpower,i.e.,thesevaluesareobtainedassumingthesignalis
34、cleanandofinfinitelength.However,inpracticesig-nalsareusuallysubjecttosometypeofdistortion,eitherinsidethetransmitterorduringtransmission,andareoffinitelength.Fig.1showsoneofthehigherorderfeaturesforanumberoftheconsidere
35、ddigitalsignaltypes.3.ClassifierInthispaper,twoimportantsupervisedclassifiershaveused.Followingphrasesdescribesbrieflytheseclassifiers.3.1.MLPneuralnetworkAnMLPneuralnetworkconsistsofaninputlayer(ofsourcenodes),oneormore
36、hiddenlayers(ofcomputationnodes)andanoutputlayer[21].TheissueoflearningalgorithmanditsspeedisveryimportantforMLP.Oneofthemostpopularlearningalgo-rithmsisbackpropagation(BP)algorithm.Howeverundercertainconditions,theBPnet
37、workclassifiercanproducenon-robustclas-sificationresultsandeasilyconvergetoalocalminimum.Moreoveritistimeconsumingintrainingphase.Inrecentyears,newlearningalgorithmshavebeenproposedforneuralnetworktraining.Inthispaper,th
38、eresilientback-propagation(RPROP)algorithmisusedasthelearningalgorithmoftheMLPneuralnetwork[26].RPROPconsidersthesignofderivativesastheindicationforthedirectionoftheweightupdate.Indoingso,thesizeofthepar-tialderivativedo
39、esnotinfluencetheweightstep.Thefollowingequationshowstheadaptationoftheupdatevaluesof?ij (weightchanges)fortheRPROPalgorithm.Forinitialization,all?ij aresettosmallpositivevalues:?ij(t) =? ? ? ?? ? ??+ ??ij(t?1);if ?E?wij
40、 (t?1) ?E?wij (t)?0?? ??ij(t?1);if ?E?wij (t?1) ?E?wij (t)?0?0 ??ij(t?1);otherwise(17)where?0 =1,0??? ?1??+,??,0,+ areknownastheupdatefac-tors,wij representstheweightvaluefromneuronjtoneuroni,andErepresentstheerrorfuncti
41、on.Wheneverthederivativeofthecorrespondingweightchangesitssign,itimpliesthatthepreviousupdatevalueistoolargeandithasskippedaminimum.Therefore,theupdatevalueisthenreduced(??)asshownabove.However,ifthederivativeretainsitss
42、ign,theupdatevalueis(?+)increased.Thiswillhelptoaccelerateconvergenceinshallowareas.Toavoidover-acceleration,intheepochfollowingtheapplicationof?+,thenewupdatevalueisneitherincreasednordecreased(?0)fromthepreviousone.Not
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- [雙語(yǔ)翻譯]--(節(jié)選)外文翻譯--外文翻譯--一種新的自動(dòng)調(diào)制識(shí)別的方法
- [雙語(yǔ)翻譯]--(節(jié)選)外文翻譯--外文翻譯--一種新的自動(dòng)調(diào)制識(shí)別的方法(譯文)
- 2012年--(節(jié)選)外文翻譯--外文翻譯--一種新的自動(dòng)調(diào)制識(shí)別的方法(英文).pdf
- 2012年--(節(jié)選)外文翻譯--外文翻譯--一種新的自動(dòng)調(diào)制識(shí)別的方法
- 2012年--(節(jié)選)外文翻譯--外文翻譯--一種新的自動(dòng)調(diào)制識(shí)別的方法(譯文).doc
- 一種新的制造系統(tǒng)(節(jié)選)【外文翻譯】
- [雙語(yǔ)翻譯]--(節(jié)選)外文翻譯--電力彈簧-一種新型智能電網(wǎng) (原文)
- [雙語(yǔ)翻譯]--外文翻譯--一種用于柔性生產(chǎn)系統(tǒng)的集成設(shè)計(jì)方法(英文)
- [雙語(yǔ)翻譯]--(節(jié)選)外文翻譯--電力彈簧-一種新型智能電網(wǎng) (譯文)
- [雙語(yǔ)翻譯]--(節(jié)選)外文翻譯--電力彈簧-一種新型智能電網(wǎng) 中英全
- [雙語(yǔ)翻譯]人臉識(shí)別外文翻譯—人臉識(shí)別技術(shù)綜述(節(jié)選)
- 一種自動(dòng)化夾具設(shè)計(jì)方法畢業(yè)課程外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯
- [雙語(yǔ)翻譯]外文翻譯—眾籌作為一種營(yíng)銷工具
- 一種自動(dòng)化夾具設(shè)計(jì)方法畢業(yè)課程外文文獻(xiàn)翻譯、中英文翻譯、外文翻譯
- [雙語(yǔ)翻譯]外文翻譯--c型無(wú)源濾波器的一種新型設(shè)計(jì)方法(英文)
- [雙語(yǔ)翻譯]--外文翻譯--一種模擬導(dǎo)電介質(zhì)電磁響應(yīng)的新方法(英文)
- [雙語(yǔ)翻譯]--外文翻譯--一種用于柔性生產(chǎn)系統(tǒng)的集成設(shè)計(jì)方法
- 一種自動(dòng)化夾具設(shè)計(jì)方法機(jī)械加工工藝外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯
- 一種新的會(huì)計(jì)文化【外文翻譯】
- [雙語(yǔ)翻譯]語(yǔ)音識(shí)別外文翻譯--自動(dòng)語(yǔ)音識(shí)別錯(cuò)誤檢測(cè)與糾正綜述(英文)
評(píng)論
0/150
提交評(píng)論