版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/262994653First-principle calculations of high-pressurephase transformations in RuCARTICLE in EPL (EUROPHYSIC
2、S LETTERS) · JANUARY 2014Impact Factor: 2.1 · DOI: 10.1209/0295-5075/105/46004READS684 AUTHORS, INCLUDING:Jian HaoJiangsu Normal University31 PUBLICATIONS 191 CITATIONS SEE PROFILEYinwei LiJiangsu Normal Un
3、iversity47 PUBLICATIONS 401 CITATIONS SEE PROFILEAvailable from: Yinwei LiRetrieved on: 06 January 2016Jian Hao et al.Table 1: Calculated structural parameters of RuC within the ZB-type, WC-type and I 4mm structures
4、at selected pressures.P (GPa) Lattice parameters (? A) V0 Atomic coordinatesZB type 0 a = 4.602 (4.545(a),4.566(b)) 24.367 Ru 4a (0, 0, 0) C 4c (1/4, 1/4, 1/4) I 4mm 0 a = 2.854 21.818 Ru 2a (0, 0, 0) c = 5.356 C 2a (0,
5、0, 0.628) 10 a = 2.829 Ru 2a (0, 0, 0) c = 5.279 C 2a (0, 0, 0.626) WC type 0 a = 2.963 (2.908(c),2.921(a)) 20.531 Ru 1a (0, 0, 0) c = 2.701 (2.822(c),2.672(a)) C 1f (2/3, 1/3, 1/2) 30 a = 2.875 c = 2.652(a)Reference [8]
6、. (b)Reference [9]. (c)Reference [6].plane-wave kinetic energy cutoff of 520 eV. Monkhorst- Pack Brillouin zone sampling grids with the resolutionof 2π × 0.03 ? A ?1were used, resulting in total energy con- vergence
7、 to better than 1 meV/atom. Elastic constants were calculated by the strain-stress method [14] with gridsdenser than 2π × 0.02 ? A ?1. The phonon dispersion curves were computed using the phonopy program [15], which
8、 is an open source package of phonon calculations based on the supercell approach [16]. This approach uses the forces obtained by the Hellmann-Feynman theorem calculated from the optimized supercell through the VASP code
9、. We used 3 × 3 × 3 supercells (27 RuC formula units) for all the three phases.Results and discussion. – After full geometry opti- mizations, the ZB-type and WC-type structures keep their initial symmetries, as
10、 shown in fig. 1. In the ZB-type structure, each Ru (C) atom is bonded with four C (Ru) atoms with Ru-C bond length of 1.98 ? A at ambient pres- sure. For the WC-type structure, each Ru (C) atom is surrounded by six C (R
11、u) atoms with relative longer Ru-C bond length of 2.179 ? A at ambient pressure. In table 1 the structural parameters of the ZB-type and WC-type phases are compared with the available experimental data [6] and earlier th
12、eoretical results [8,9]. A good agreement within a 2% interval is found. The cell parameters and atomic positions for Pmn21- RuC were also fully optimized at selected pressures. How- ever, we surprisingly found that the
13、symmetry of Pmn21 changes during the optimization. In the Pmn21 structure of OsC [10], each Os atom is coordinated by five C atoms, forming distorted OsC5 pyramids. In each OsC5 pyra- mid, the four bottom Os-C bonds can
14、be classified into two types with slightly different bond lengths, as shown in fig. 1(c). Once the Os is replaced by Ru, the four bottom Ru-C bonds automatically become equal during optimization at all pressures studied.
15、 Consequently, stan- dard RuC5 pyramid (Ru-C bond lengths of 1.984 ? A andFig. 1: (Color online) Crystal structures of RuC in (a) ZB- type, (b) WC-type and (d) I 4mm structures. (c) is the Pmn21 structure of OsC to show
16、the structure change from Pmn21 to I 4mm. Big black and small blue spheres represent Ru (Os) and C atoms, respectively.2.113 ? A × 4) is formed and the Pmn21 structure trans- forms to a higher symmetric tetragonal s
17、tructure with space group I 4mm (fig. 1(d)).Figure 2(a) presents the calculated enthalpies of the ZB-type and WC-type structures with respect to the I 4mm structure. One observes obviously that the I 4mm structure become
18、s energetically more favorable than the ZB type above 9.3 GPa. The I 4mm structure is stable up to 26 GPa, above which the WC-type structure takes over. According to our enthalpy results, a phase sequence of ZB type → I4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 材料科學與工程外文翻譯--ruc高壓相變的第一性原理計算
- 材料科學與工程外文翻譯--RuC高壓相變的第一性原理計算(英文).pdf
- 材料科學與工程外文翻譯--ruc高壓相變的第一性原理計算
- 材料科學與工程外文翻譯--RuC高壓相變的第一性原理計算(英文).pdf
- 材料科學與工程外文翻譯--ruc高壓相變的第一性原理計算(譯文)
- 材料科學與工程外文翻譯--RuC高壓相變的第一性原理計算(譯文).doc
- 材料科學與工程外文翻譯--RuC高壓相變的第一性原理計算(譯文).doc
- 材料科學與工程畢業(yè)論文外文翻譯
- 高壓下釩的結構相變的第一性原理計算研究.pdf
- 材料科學與工程無機非金屬材料科學與工程
- 材料科學與工程
- 材料科學與工程論文
- 壓力下釩相變的第一性原理計算.pdf
- 納米結構及其相變的第一性原理計算研究.pdf
- 開題報告 - 材料科學與工程
- 材料科學與工程學科
- MgZnO電子結構及ZnO高壓相變的第一性原理研究.pdf
- 高壓下AlH-,3-相變的第一性原理研究.pdf
- 材料科學與工程基礎(中文翻譯要義版)
- 材料科學
評論
0/150
提交評論