已閱讀1頁,還剩25頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、N-李代數(shù)是乘弦運貸n-元運算的一種多元代數(shù)系統(tǒng),N-李代數(shù)也可以看作為李代數(shù)的推廣。多元李代數(shù)系統(tǒng)在幾何學(xué)、動力學(xué)系統(tǒng)及玄論中有著廣泛的應(yīng)用。特別是n-李代數(shù)的導(dǎo)子代數(shù),是n-李代數(shù)在幾何學(xué)及相關(guān)學(xué)科應(yīng)用的重要工具。但是,目前n-李代數(shù)的導(dǎo)子代數(shù)的結(jié)構(gòu)還知道的很少,這大大影響了n-李代數(shù)的應(yīng)用。本文研究Z2域上一類5-維3-李代數(shù)的導(dǎo)子代數(shù)的結(jié)構(gòu)。研究了當(dāng)導(dǎo)代數(shù)的維數(shù)等于4時Z2域上每一類5-維3-李代數(shù)的內(nèi)導(dǎo)子代數(shù)與導(dǎo)子代數(shù)的可解性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 一類5維3-Lie代數(shù)的導(dǎo)子代數(shù).pdf
- 6維4-Lie代數(shù)的導(dǎo)子代數(shù).pdf
- 自反算子代數(shù)上Lie導(dǎo)子的結(jié)構(gòu).pdf
- 具有3維導(dǎo)代數(shù)的5維3-Lie代數(shù).pdf
- 算子代數(shù)的Lie理想.pdf
- 17114.倆類李代數(shù)的導(dǎo)子代數(shù)
- 算子代數(shù)上的Lie映射.pdf
- Z-,2-上一類5維3-Lie代數(shù).pdf
- 一類廣義witt代數(shù)(vir)[G]的子代數(shù)及其自同構(gòu).pdf
- 關(guān)于Heisenberg超代數(shù)的導(dǎo)子代數(shù).pdf
- 3-Lie代數(shù)的次理想.pdf
- 算子代數(shù)上的Lie映射和Lie理想.pdf
- 一類李代數(shù)上的Post-Lie代數(shù)結(jié)構(gòu).pdf
- 算子代數(shù)上的中心化子和Lie可導(dǎo)映射.pdf
- 幾類李代數(shù)的李triple導(dǎo)子代數(shù)研究
- 李超代數(shù)的導(dǎo)子代數(shù)及單李超代數(shù).pdf
- 超有限因子中套子代數(shù)的Lie理想.pdf
- (r,s)-微分算子代數(shù)的導(dǎo)子代數(shù)及其二上圈.pdf
- 幾類李代數(shù)的李triple導(dǎo)子代數(shù)研究.pdf
- 算子代數(shù)上的Jordan映射和Lie理想.pdf
評論
0/150
提交評論