基于統(tǒng)計(jì)學(xué)的個(gè)性化推薦算法探究.pdf_第1頁
已閱讀1頁,還剩72頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、隨著互聯(lián)網(wǎng)的高速發(fā)展,信息呈爆炸式地增長,大數(shù)據(jù)在飛速的發(fā)展中,數(shù)據(jù)挖掘是一個(gè)充滿活力的研究領(lǐng)域,商業(yè)利益的強(qiáng)大驅(qū)動(dòng)力將會不斷地促進(jìn)它的發(fā)展,個(gè)性化推薦就屬于大數(shù)據(jù)時(shí)代數(shù)據(jù)挖掘應(yīng)用在互聯(lián)網(wǎng)方面的重要技術(shù)。面對海量數(shù)據(jù),推薦系統(tǒng)的產(chǎn)生能實(shí)現(xiàn)信息消費(fèi)者和生產(chǎn)者的雙贏。協(xié)同過濾算法是個(gè)性化推薦中最成功和應(yīng)用最廣泛的算法之一,但它依賴于用戶的歷史評分?jǐn)?shù)據(jù),所以存在冷啟動(dòng),數(shù)據(jù)的稀疏性等問題。
  大數(shù)據(jù)新形勢下,包括個(gè)性化推薦在內(nèi)的各種數(shù)

2、據(jù)挖掘算法給統(tǒng)計(jì)學(xué)帶來了機(jī)遇和挑戰(zhàn),一方面,數(shù)據(jù)挖掘的各種算法很多思想都來自于統(tǒng)計(jì)學(xué);另一方面,數(shù)據(jù)挖掘面對統(tǒng)計(jì)學(xué)表現(xiàn)出了強(qiáng)大的生機(jī)。據(jù)此,本文探究在數(shù)據(jù)量比較大的情況下,將統(tǒng)計(jì)分析應(yīng)用到個(gè)性化推薦算法中的效果,同時(shí)也應(yīng)用數(shù)據(jù)挖掘的其他模型,如關(guān)聯(lián)法則,聚類等方法改進(jìn)模型。
  本文提出了基于統(tǒng)計(jì)學(xué)的個(gè)性化推薦,主要是利用MATLAB,SAS進(jìn)行輔助編程,分別實(shí)現(xiàn)了描述性統(tǒng)計(jì)、多維關(guān)聯(lián)法則、協(xié)同過濾的算法進(jìn)行推薦。對協(xié)同過濾模型存

3、在的缺點(diǎn)的改進(jìn),針對模型的數(shù)據(jù)稀缺性和冷啟動(dòng)問題,結(jié)合用戶的評分和特征信息,提出用一維和二維的統(tǒng)計(jì)量改進(jìn)數(shù)據(jù)的稀疏度問題,然后利用SQL SERVER2005和EXCEL數(shù)據(jù)挖掘外接模塊對用戶建立聚類模型,基于各類的統(tǒng)計(jì)分析改進(jìn)模型,聚類模型不僅能解決數(shù)據(jù)的稀缺性,而且能克服冷啟動(dòng)問題;最后通過奇異值分解方法改進(jìn)算法,并由平均絕對誤差來衡量各種改進(jìn)效果。通過對比本文得出結(jié)論:根據(jù)用戶的評分和特征進(jìn)行統(tǒng)計(jì)分析,用分析結(jié)果改進(jìn)協(xié)同過濾算法有

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論