版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 中文2935字</b></p><p> 畢 業(yè) 設(shè) 計(論 文)外 文 參 考 </p><p><b> 資 料 及 譯 文</b></p><p> 譯文題目: DESIGN OF REINFORCED CONCRETE STRUCTURES </p><p&g
2、t; 學生姓名: 楊濤 學 號: 1106101047 </p><p> 專 業(yè): 土木工程 </p><p> 所在學院: 建筑工程學院 </p><p> 2014年 12月 31日</p&g
3、t;<p><b> 原文:</b></p><p> DESIGN OF REINFORCED CONCRETE STRUCTURES</p><p> 1. BASIC CONCERPTS AND CHARACERACTERISTICS OF REINFORCED CONCRETE</p><p> Plain con
4、crete is formed from hardened mixture of cement, water , fine aggregate , coarse aggregate (crushed stone or gravel ) , air and often other admixtures . The plastic mix is placed and consolidated in the formwork, then c
5、ured to accelerate of the chemical hydration of hen cement mix and results in a hardened concrete. It is generally known that concrete has high compressive strength and low resistance to tension. Its tensile strength is
6、approximately one-tenth of its compressive strength</p><p> For example, a plain concrete beam under a uniformly distributed load q is shown in Fig . 1.1(a), when the distributed load increases and reaches
7、a value q=1.37KN/m , the tensile region at the mid-span will be cracked and the beam will fail suddenly . A reinforced concrete beam if the same size but has to steel reinforcing bars (2φ16) embedded at the bottom under
8、a uniformly distributed load q is shown in Fig.1.1(b). The reinforcing bars take up the tension there after the concrete is cracked. W</p><p> Concrete and reinforcement can work together because there is a
9、 sufficiently strong bond between the two materials, there are no relative movements of the bars and the surrounding concrete cracking. The thermal expansion coefficients of the two materials are 1.2×10-5K-1 for ste
10、el and 1.0×10-5~1.5×10-5K-1 for concrete . </p><p> Generally speaking, reinforced structure possess following features :</p><p> Durability .With the reinforcing steel protected by
11、the concrete , reinforced concrete</p><p> Fig.1.1Plain concrete beam and reinforced concrete beam</p><p> Is perhaps one of the most durable materials for construction .It does not rot rust ,
12、 and is not vulnerable to efflorescence . </p><p> (2)Fire resistance .Both concrete an steel are not inflammable materials .They would not be affected by fire below the temperature of 200℃ when there is a
13、moderate amount of concrete cover giving sufficient thermal insulation to the embedded reinforcement bars.</p><p> (3)High stiffness .Most reinforced concrete structures have comparatively large cross secti
14、ons .As concrete has high modulus of elasticity, reinforced concrete structures are usually stiffer than structures of other materials, thus they are less prone to large deformations, This property also makes the reinfor
15、ced concrete less adaptable to situations requiring certain flexibility, such as high-rise buildings under seismic load, and particular provisions have to be made if reinforced concrete is </p><p> (4)Local
16、ly available resources. It is always possible to make use of the local resources of labour and materials such as fine and coarse aggregates. Only cement and reinforcement need to be brought in from outside provinces.<
17、/p><p> (5)Cost effective. Comparing with steel structures, reinforced concrete structures are cheaper.</p><p> (6)Large dead mass, The density of reinforced concrete may reach 2400~2500kg/m3.Com
18、pare with structures of other materials, reinforced concrete structures generally have a heavy dead mass. However, this may be not always disadvantageous, particularly for those structures which rely on heavy dead weight
19、 to maintain stability, such as gravity dam and other retaining structure. The development and use of light weight aggregate have to a certain extent make concrete structure lighter.</p><p> (7)Long curing
20、period.. It normally takes a curing period of 28 day under specified conditions for concrete to acquire its full nominal strength. This makes the progress of reinforced concrete structure construction subject to seasonal
21、 climate. The development of factory prefabricated members and investment in metal formwork also reduce the consumption of timber formwork materials.</p><p> (8)Easily cracked. Concrete is weak in tension a
22、nd is easily cracked in the tension zone. Reinforcing bars are provided not to prevent the concrete from cracking but to take up the tensile force. So most of the reinforced concrete structure in service is behaving in a
23、 cracked state. This is an inherent is subjected to a compressive force before working load is applied. Thus the compressed concrete can take up some tension from the load.</p><p> 2. HISTOEICAL DEVELPPMENT
24、 OF CONCRETE STRUCTURE</p><p> Although concrete and its cementitious(volcanic) constituents, such as pozzolanic ash, have been used since the days of Greek, the Romans, and possibly earlier ancient civiliz
25、ation, the use of reinforced concrete for construction purpose is a relatively recent event, In 1801, F. Concrete published his statement of principles of construction, recognizing the weakness if concrete in tension, Th
26、e beginning of reinforced concrete is generally attributed to Frenchman J. L. Lambot, who in 1850 constru</p><p> Before the early twenties of 20th century, reinforced concrete went through the initial stag
27、e of its development, Considerable progress occurred in the field such that by 1910 the German Committee for Reinforced Concrete, the Austrian Concrete Committee, the American Concrete Institute, and the British Concrete
28、 Institute were established. Various structural elements, such as beams, slabs, columns, frames, arches, footings, etc. were developed using this material. However, the strength of concret</p><p> By the la
29、te twenties, reinforced concrete entered a new stage of development. Many buildings, bridges, liquid containers, thin shells and prefabricated members of reinforced concrete were concrete were constructed by 1920. The er
30、a of linear and circular prestressing began.. Reinforced concrete, because of its low cost and easy availability, has become the staple material of construction all over the world. Up to now, the quality of concrete has
31、been greatly improved and the range of its utility </p><p> The concrete commonly used today has a compressive strength of 20~40MPa. For concrete used in pre-stressed concrete the compressive strength may b
32、e as high as 60~80MPa. The reinforcing bars commonly used today has a tensile strength of 400MPa, and the ultimate tensile strength of prestressing wire may reach 1570~1860Pa. The development of high strength concrete ma
33、kes it possible for reinforced concrete to be used in high-rise buildings, off-shore structures, pressure vessels, etc. In order to re</p><p> The tallest reinforced concrete building in the world today is
34、the 76-story Water Tower Building in Chicago with a height of 262m. The tallest reinforced concrete building in China today is the 63-story International Trade Center in GuangZhou with a height a height of 200m. The tall
35、est reinforced concrete construction in the world is the 549m high International Television Tower in Toronto, Canada. He prestressed concrete T-section simply supported beam bridge over the Yellow River in Luoyang has<
36、;/p><p> In the design of reinforced concrete structures, limit state design concept has replaced the old allowable stresses principle. Reliability analysis based on the probability theory has very recently be
37、en introduced putting the limit state design on a sound theoretical foundation. Elastic-plastic analysis of continuous beams is established and is accepted in most of the design codes. Finite element analysis is extensiv
38、ely used in the design of reinforced concrete structures and non-linear behavior</p><p> 3. SPECIAL FEATURES OF THE COURSE</p><p> Reinforced concrete is a widely used material for constructio
39、n. Hence, graduates of every civil engineering program must have, as a minimum requirement, a basic understanding of the fundamentals of reinforced concrete.</p><p> The course of Reinforced Concrete Design
40、 requires the prerequisite of Engineering Mechanics, Strength of Materials, and some if not all, of Theory of Structures, In all these courses, with the exception of Strength of Materials to some extent, a structure is t
41、reated of in the abstract. For instance, in the theory of rigid frame analysis, all members have an abstract EI/l value, regardless of what the act value may be. But the theory of reinforced concrete is different, it dea
42、ls with specific mat</p><p> The theory of reinforced concrete is relatively young. Although great progress has been made, the theory is still empirical in nature in stead of rational. Many formulas can not
43、 be derived from a few propositions, and may cause some difficulties for students. Besides, due to the difference in practice in different countries, most countries base their design methods on their own experience and e
44、xperimental results. Consequently, what one learns in one country may be different in another country. </p><p> The desk calculator has made calculations to a high degree of precision possible and easy. Stu
45、dents must not forget that concrete is a man-made material and a 10% consistency in quality is remarkably good. Reinforcing bad=rs are rolled in factory, yet variation is=n strength may be as high as 5%. Besides, the pos
46、ition of bars in the formwork may deviate from their design positions. In fact two figure accuracy is adequate for almost all the cases, rather than carrying the calculations to meaningl</p><p><b> 中文
47、譯文:</b></p><p><b> 鋼筋混凝土結(jié)構(gòu)設(shè)計</b></p><p> 一、鋼筋混凝土基本概念和特點</p><p> 混凝土是指由水泥膠凝的水、細致聚合體、粗聚合物(碎石或沙礫)、空氣、以及其他混合物的堅硬混合物。這種塑體在制作過程中,加水的水泥并混合然后曬干最終成為堅硬的混凝土。通常我們都知道混凝土有高抗壓
48、低抗拉的受力特性。其抗拉強度大概抗壓強度的十分之一。所以,為了增加混凝土截面的抗拉強度必須增加受拉區(qū)間的受拉鋼筋。</p><p> 例如,如圖1.1(a)所示一段均布荷載梁,當均布荷載增大至q=1,37kn/m時,中部抗拉區(qū)域?qū)茐牟⑶伊簳蝗粩嗔?。一段增加?根鋼筋(2 φ 16)的加強梁受到均布荷載q如圖1.1(b)所示。當混凝土破壞時受拉鋼筋承受其受到的原有。當承載力q增大,破壞程度、作用于鋼筋上的偏
49、心受壓將會大。當鋼筋接近縱向?y方向的屈服強度時,很多偏移和破壞程度預兆梁將會塌落。梁的破壞是由于受壓區(qū)域的混凝土破壞。破壞荷載q=9.31kn/m,是素混凝土梁的6.8倍。</p><p> 混凝土和鋼筋可以同時起作用是因為在兩種材料之間有足夠的粘合力,在破壞之前鋼筋和包裹混凝土沒有相對位移。這兩種材料的溫度擴張系數(shù)鋼材為1.2×10-5K-1 ,混凝土為1.0×10-5至1.5×
50、;10-5K-1。</p><p> 圖1.1.素混凝土梁和鋼筋混凝土梁</p><p> 通常來說,鋼筋混凝土結(jié)構(gòu)具有以下特點:</p><p> 堅固耐用。受拉鋼筋受到混凝土的保護,這種鋼筋混凝土可能是是最耐用的建筑構(gòu)造之一。它不會腐蝕和銹蝕,且不會被風化。</p><p> 耐火性強?;炷梁弯摻疃疾皇强扇疾牧?。當鋼筋于混凝土的
51、包裹下時,并不懼怕200℃以下的火焰。</p><p> 高硬度。大多數(shù)的鋼筋混凝土構(gòu)件具有相對較大的橫截面。由于混凝土具有較大的彈性模量,鋼筋混凝土通常比其他材料更加堅硬,因此更不容易發(fā)生形變。這個性質(zhì)同樣使得鋼筋混凝土不適用于地形要求更加有彈性的地方,例如地震帶中的高層建筑,以及對鋼筋混凝土有特殊要求的地方。</p><p> 材料可在當?shù)孬@得??刹捎卯?shù)貏趧恿筒牧希绱旨毤?/p>
52、。只有水泥和鋼筋需要從他地運輸。</p><p> 造價低。相比于鋼構(gòu)件,鋼筋混凝土構(gòu)件更加便宜。</p><p> 大重量。純鋼構(gòu)件可能達到2400~2500kg/m3。相較于其他材料構(gòu)件鋼筋混凝土構(gòu)件通常具有很大的重量。無論如何,這可能是有利的,尤其對于那些需要較大重量來保持穩(wěn)固的構(gòu)造,例如重型水壩以及其他擋土墻構(gòu)造。重型集料的運用和發(fā)展使得混凝土構(gòu)件將會越來越廣泛。</p&
53、gt;<p> 長養(yǎng)護期。通常要用28天使得混凝土達到最大強度。這使得鋼筋混凝土構(gòu)造建設(shè)周期適應于季節(jié)性氣候。工廠可以預先減少損失。 同時也可提前減少金屬和木材的投資和損失。</p><p> 易于破壞。混凝土受拉能力弱并且在受拉區(qū)域容易受到破壞。鋼筋可以與放其受拉破壞并提升其受拉承載力。所以大部分鋼筋混凝土構(gòu)造都是破壞在指定區(qū)域。這是一種鋼筋混凝土的天生缺陷。預應力混凝土構(gòu)造在受到荷載前可事先
54、施加一定的力。這樣預應力混凝土就可以承載更大的荷載。</p><p> 二、混凝土結(jié)構(gòu)的發(fā)展歷史</p><p> 盡管水泥和水泥構(gòu)成物(例如火山灰)的應用可能早于古希臘和古羅馬文明,但鋼筋混凝土用于建筑還是一個較新的事件。在1801年,F(xiàn).Coignet 發(fā)表了他的建筑原理聲明,指出了混凝土在受拉條件下的拖點。鋼筋混凝土首次被廣泛承認是在1850年被一個名叫J.LLambot的法國人
55、,1855年一小船混凝土在巴黎世界展覽會上被展出。1854年W.B.Wilkinson在英國得到了鋼筋混凝土樓板的專利。1854年一個名叫J.Monier的法國園丁運用金屬骨架制作了植物支架。1870之前,Monier連續(xù)獲得了鋼筋混凝土管、板和拱的專利證書。但是Monier沒有這種新材料工作原理方面的知識,他將鋼筋加入了他的制造品中。然后少量的建筑開始使用鋼筋混凝土。1887年以前,德國工程師Wayss和Bauschinger建議在受
56、拉區(qū)域加入鋼筋,在建筑中使用鋼筋混凝土作為材料開始快速蔓延開來。在1906年,C.A.P.Turner首次使用了無梁板。</p><p> 20世紀20年代以前,鋼筋混凝土越過了它的第一階段。非常大的進步是德國鋼筋混凝土委員會、奧地利混凝土委員會、美國混凝土協(xié)會、英國混凝土協(xié)會在1910年創(chuàng)立。非常多使用這種材料構(gòu)造上的原理被創(chuàng)立,例如梁、板、柱、框架、基礎(chǔ)等等。盡管這樣,混凝土的強度和鋼筋受拉強度仍然很低。2
57、0世紀初期混凝土的強度大概15MPa,鋼筋受拉強度大概200MPa。設(shè)計允許壓力基本原理根據(jù)材料的伸展強度確定。</p><p> 接下來的20年,鋼筋混凝土進入一個新的階段。許多建筑、橋梁、液體容器、細骨架和預制構(gòu)件鋼筋混凝土建成于1920年。鋼筋混凝土的心事單開始了。鋼筋混凝土由于其低造價和簡單有效發(fā)展至今,成為全世界廣泛應用的建筑材料。發(fā)展至今,混凝土的品質(zhì)和應用范圍得到很大提高。在建筑行業(yè)鋼筋混凝土的使
58、用目的有了創(chuàng)新,也有了新的使用方式。</p><p> 現(xiàn)今通常使用20~40MPa強度的混凝土。強度較大的情況下可能達到60~80MPa。受拉鋼筋受拉強度可能達到400MPa,最大可達到1570~1860MPa。高強度混凝土使得鋼筋混凝土可被適用于高層建筑、海邊建筑、壓力容器等等。為了減輕混凝土建筑的重量,多種密度在1400~1800kg/m3的輕質(zhì)混凝土開始發(fā)展起來。受壓強度50MPa的輕質(zhì)混凝土被大量應用
59、與建筑當中。一個最好的例子就是跨長122M的伊利諾伊州大學體育館運用了一種密度為1700kn/m的混凝土。另一個例子就是北京西便門2個20層住宅樓。這兩個建筑的墻是使用一種密度為1800kn/m的混凝土。</p><p> 現(xiàn)今世界上最高的建筑是芝加哥262m的76層水塔?,F(xiàn)今中國最高的建筑是廣州200m的63層建筑國際貿(mào)易中心。世界上最高的建筑師加拿大多倫多549m的國際電視塔。的懸索橋為中國紅河上的懸索橋全
60、長90m。最大跨度的告訴橋位于上海茂港,全長200m。最大的混凝土簡支梁橋位于洛陽,橫跨黃河共67跨標準跨為50m。</p><p> 在鋼筋混凝土設(shè)計中,限制情況設(shè)計概念代替了舊的設(shè)計原理?;诟怕收摰目煽康胤治鲎罱撤湃氡憬萸闆r概念來建立健全的理論建立。連續(xù)梁的彈塑性在絕大多數(shù)設(shè)計規(guī)范中建立并被接受。限定彈塑性廣泛應用于鋼筋混凝土結(jié)構(gòu)設(shè)計,混凝多用途土正處于研究當中?,F(xiàn)在地震災難促進深入混凝土中抗爭鋼筋的研
61、究,很多重要研究結(jié)果已經(jīng)被積累下來。</p><p><b> 三、課程特點</b></p><p> 鋼筋混凝土在建筑當中被廣泛應用。因此,作為一個基本條件,每位學生至少要對鋼筋混凝土基本原理有基本的了解。</p><p> 鋼筋混凝土結(jié)構(gòu)設(shè)計課程需要具備一定的力學、材料強度、構(gòu)造原理知識。在整個課程當中,在一定程度不考慮材料強度的情況
62、下可以抽象看待部分構(gòu)造。例如,按照條形框架分析的原理每個構(gòu)件有抽象EI/l取值,不考慮互相之間的作用情況。但是鋼筋混凝土構(gòu)件的原理不同,必須精確材料、混凝土和鋼筋。很多參數(shù)必須通過實驗來取值而不能抽象對待。此外,由于混凝土受到的少量拉力使得鋼筋混凝土構(gòu)件經(jīng)常受到破壞,有一部分參數(shù)隨著荷載變化,例如混凝土的彈性模量E,界面慣性矩I。</p><p> 鋼筋混凝土的原理確定時間較短。盡管發(fā)展不錯,這些原理任然跟多取
63、決于實際經(jīng)驗而非起合理性研究。許多公式不能像力學一樣從一點點陳述中得出,可能對同學們來說導致很多困難。此外,不同國家有不同的準側(cè),多數(shù)國家用其自身經(jīng)驗和實驗制定其基本準則。另外,規(guī)范仍然在快速變更,研究中的新發(fā)現(xiàn)總是促使其校訂。在中國,建筑規(guī)范大概每15年都會有較大的校訂,而在期間校訂較少。本書根據(jù)現(xiàn)行規(guī)范“混凝土結(jié)構(gòu)設(shè)計規(guī)范”(GB50010-2002)編制。同學們必須記住本課程只能給予他們現(xiàn)行規(guī)范規(guī)定的基本原理,而非法律規(guī)定范圍以外
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--鋼筋混凝土結(jié)構(gòu)設(shè)計
- 土木工程外文翻譯---抗震鋼筋混凝土結(jié)構(gòu)設(shè)計原則
- 鋼筋混凝土結(jié)構(gòu)設(shè)計
- 外文翻譯---鋼筋混凝土結(jié)構(gòu)設(shè)計制約因素(部分)
- 鋼筋混凝土坡屋頂?shù)慕Y(jié)構(gòu)設(shè)計外文翻譯
- 畢業(yè)設(shè)計---多層鋼筋混凝土框架結(jié)構(gòu)設(shè)計
- 鋼筋混凝土結(jié)構(gòu)設(shè)計原理
- 鋼筋混凝土水池結(jié)構(gòu)設(shè)計
- 鋼筋混凝土結(jié)構(gòu)設(shè)計19
- 土木外文翻譯--- 鋼筋混凝土
- 延性鋼筋混凝土結(jié)構(gòu)設(shè)計淺析
- 友誼賓館鋼筋混凝土建筑結(jié)構(gòu)設(shè)計【畢業(yè)設(shè)計】
- 鋼筋混凝土結(jié)構(gòu)設(shè)計原理題庫
- 土木工程畢業(yè)設(shè)計外文文獻翻譯--鋼筋混凝土
- 土木工程專業(yè)畢業(yè)設(shè)計外文翻譯--鋼筋混凝土結(jié)構(gòu)中鋼筋連接綜述
- 凱利歌廳鋼筋混凝土建筑結(jié)構(gòu)設(shè)計【畢業(yè)設(shè)計】
- 鋼筋混凝土結(jié)構(gòu)辦公樓的建筑設(shè)計、結(jié)構(gòu)設(shè)計畢業(yè)設(shè)計
- 解析鋼筋混凝土框架結(jié)構(gòu)設(shè)計
- 特殊鋼筋混凝土水池結(jié)構(gòu)設(shè)計
- 對鋼筋混凝土結(jié)構(gòu)設(shè)計的探討
評論
0/150
提交評論