版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> An Application of Nonlinear PID Control to a Class of Truck ABS Problems</p><p> Fangjun Jiang</p><p> Ford Motor Company, Product Development Center, GB-E65, MD</p><p>
2、; 19920901 Oakwood Blvd. Dearborn, MI 48124</p><p> Zhiqiang Gao</p><p> The Applied Control Research LaboratoryDepartment of </p><p> Electrical and Computer Engineering</p&
3、gt;<p> Cleveland State University, Cleveland, Oh 44115</p><p> Abstract: A new NPID (Nonlinear Proportional-Integral-Differential) control algorithm is applied to a class of truck ABS (Anti-lock Br
4、ake System) problems. The NPID algorithm combines the advantages of robust control and easy tuning. Simulation results at various situations using TruckSim show that NPID controller has shorter stopping distance and bett
5、er velocity performance than the conventional PID controller and a loop-shaping controller.</p><p> Keywords: Nonlinear, PID, ABS.</p><p> 1. Introduction</p><p> ABS for commerc
6、ial vehicles appeared on the market in 1960s and began to grow fast in 1970s with the technologies of microcomputers and electronics [1]. ABS is recognized as an important contribution to road safety. It is now available
7、 in almost all types of vehicles. The automotive industry is continuously developing new generations of ABS. The technologies of ABS are also applied in TCS (Traction Control System) and VDSC (Vehicle Dynamic Stability C
8、ontrol) It is well known that wheels will sli</p><p> The wheel slip is defined as:</p><p><b> (1.1)</b></p><p> where S, ω, R and V denote the wheel slip, the wheel
9、angular velocity, the wheel rolling radius, and the vehicle forward velocity, respectively.</p><p> In normal driving conditions, V ≈ ωR therefore S ≈ 0. In severe braking, it is common to have ω = 0 while
10、 V ≠ 0 , or S = 1, which is called wheel lockup. Wheel lockup is undesirable since it prolongs the stopping distance and causes the loss of direction control.</p><p> 1.1 A Class of Truck ABS Problems</p
11、><p> The objective of ABS is to manipulate the wheel slip so that a maximum friction force is obtained and the steering stability (also known as the lateral stability) is maintained. That is, to make the vehi
12、cle stop in the shortest distance possible while maintaining the directional control. It is well known that the friction coefficient, μ, is a nonlinear function of the slip, S. The ideal goal for the control design is to
13、 regulate the wheel velocity, ω, such that an optimal slip, which corresponds</p><p> In this paper, the control design is focused on a class of truck ABS problems, which pose a few unique challenges, diffe
14、rent from passenger cars.</p><p> 1. The actuator of the truck ABS is a pneumatic brake system, which is typically slower in response and harder to control than a hydraulic brake system. The control action
15、of the brake system is discrete. The brake pressure is controlled by discrete valves (open or close). The brake pressure can be controlled to increase, hold constant or decrease. Through PWM (Pulse Width Modulation), the
16、 actions of the discrete valves are mapped into a continues analog control signal ranging from –1 to +1, whe</p><p> pressure and 0 means holding pressure as constant.</p><p> 2. The measureme
17、nt of the brake pressure is not available, which makes the control of the pneumatic brake system even more difficult. The ABS controller must deal with the brake dynamics and the wheel dynamics as a whole plant.</p>
18、;<p> 3. The measurement of the vehicle velocity or vehicle acceleration is not available. The only feedback signals are two or four channels of wheel angular velocity. It poses a challenging problem for the vehi
19、cle velocity estimation since the vehicle velocity is necessary to set the wheel reference velocity. A separate study was carried out to resolve this issue in [2].</p><p> 4. The complex dynamics of the tra
20、ctor/trailer system and the large variations of the truck operation condition set a very stringent requirement for the ABS controller. The tuning and testing of a truck ABS are also much more difficult than an ABS for pa
21、ssenger cars.</p><p> 1.2 Current Technology</p><p> Various control strategies have been implemented in real ABS products or discussed in publications. Since the technologies used in commerci
22、al ABS products are usually kept as trade secrets, it is very difficult to determine their detailed control algorithms. From the literature available [3, 4, 5, 6], a few algorithms use an approach similar to "bang-b
23、ang" control. They usually have two or more threshold values for the wheel deceleration or the wheel slip. Once the calculated wheel deceleration </p><p> Finite state machine methods are also widely a
24、pplied in the industry. Based upon the measured signals such s wheel velocity, vehicle deceleration and/or brake pressure, the operation of the vehicle is characterized by a set of different states, such as normal drivin
25、g, lockup, free rolling ,etc. The rake pressure is then controlled to increase, hold constant or decrease based on the state the vehicle is in and other design logic.</p><p> These two methods heavily rely
26、on the experience of the designers and drivers. It is fairly difficult to analyze the controller’s performance during the design stage. The tuning of the controller is done purely on trial and error basis. The needs for
27、a systematic design approach for the development are quite evident in this industry. Such needs motivated the research efforts that result in [9].</p><p> In particular, the truck ABS problems are reformula
28、ted as a closed-loop control problem. A cascade loop structure, as shown in Figure 1, as well as various control algorithms are proposed. The outer loop, which includes the vehicle velocity estimation and desired slip ca
29、lculation, provides the command signal, Vwd , for the inner wheel velocity loop. The separation of the outer and inner loop designs, similar to the separation principle in linear system theory, are only made possible in
30、the frame</p><p> Figure 1: A Cascade Structure for ABS</p><p> The vehicle velocity estimation and the wheel velocity controller are the key design issues. A nonlinear filter approach, based
31、on the work in [10], to vehicle velocity estimation problems was developed and proved to be quite effective [2,9]. For inner loop control, three methods were explored in [9], including the PID, the loop-shaping, and the
32、NPID algorithms. The PID is easy to design and tune but is also limited in performance. The loop-shaping controller, designed based on the linear model </p><p> Similar tuning difficulties can also be seen
33、in various other advanced control strategies such as fuzzy logic control, model reference control and neural network, which were also extensively discussed as possible candidates for ABS.</p><p> In the dev
34、elopment of an ABS controller, one of the major issues is testing. The ABS controller needs to go through a series of software and hardware tests. Due to the complexity of the truck system and the large variations of ope
35、ration conditions, on-site calibration or tuning of the controller is necessary. This requires the new control methods to be not only more powerful, but also easily tunable. The tuning of a fuzzy logic controller or mode
36、l reference controller involves multiple rules or </p><p> Based on the above discussion, we propose a NPID control design strategy, based on the work of J. Han [11,12], that combines the advantages of robu
37、st performance and the ease of tuning. It is proved to be an effective controller for truck ABS.</p><p><b> 英語(yǔ)翻譯</b></p><p> · 非線(xiàn)性PID控制在一系列卡車(chē)ABS問(wèn)題中的應(yīng)用</p><
38、p><b> 蔣方軍</b></p><p> 福特汽車(chē)公司產(chǎn)品開(kāi)發(fā)中心,GB-E65,MD 19920901</p><p> OAKWOOD BLVD.DEARBORN,MI 48124</p><p><b> 高志強(qiáng)</b></p><p> 克利夫蘭州立大學(xué)電子與計(jì)算機(jī)工程
39、應(yīng)用控制</p><p> 研究實(shí)驗(yàn)室,克利夫蘭,OH44115</p><p> 摘要:一種新型的NPID(非線(xiàn)性比例-積分-微分)控制算法正應(yīng)用于一系列卡車(chē)的ABS(制動(dòng)防抱死系統(tǒng))問(wèn)題中。NPID算法不僅魯棒性強(qiáng),而且參數(shù)便于整定。使用仿真軟件TRUCKSIM在各種情況下的仿真結(jié)果顯示,相對(duì)于常規(guī)的PID控制器和回路整形控制器,NPID控制器具有更短的制動(dòng)距離和更好的速度表現(xiàn)性。
40、</p><p> 關(guān)鍵詞:非線(xiàn)性,PID,ABS.</p><p><b> 1.引言</b></p><p> 商用車(chē)上配置ABS系統(tǒng)出現(xiàn)于上世紀(jì)60年代,隨著微型計(jì)算機(jī)和電子技術(shù)的發(fā)展,ABS系統(tǒng)在70年代進(jìn)入了一個(gè)高速發(fā)展的時(shí)期。ABS對(duì)于公路交通安全做出了巨大貢獻(xiàn),幾乎所有的汽車(chē)都配備了ABS系統(tǒng)。汽車(chē)工業(yè)也正在不斷的開(kāi)發(fā)更新一
41、代的ABS系統(tǒng),同時(shí)ABS技術(shù)也正被應(yīng)用于TCS(牽引控制系統(tǒng))和VDSC(車(chē)輛動(dòng)態(tài)穩(wěn)定性控制系統(tǒng))。</p><p> 眾所周知,車(chē)輛在緊急制動(dòng)或在一些濕滑、結(jié)冰的路面上制動(dòng)時(shí),車(chē)輪將會(huì)滑動(dòng)并鎖死。這通常會(huì)導(dǎo)致一個(gè)較長(zhǎng)的制動(dòng)距離,某些時(shí)候汽車(chē)還將喪失轉(zhuǎn)向穩(wěn)定性。ABS的功能就是在汽車(chē)制動(dòng)時(shí)防止車(chē)輪鎖死,在保持較好的轉(zhuǎn)向穩(wěn)定性的同時(shí)獲得最短的制動(dòng)距離。</p><p> 車(chē)輪滑移率為:
42、 (1.1)</p><p> 式中S,w,R和V分別代表車(chē)輪的滑移率、角速度、滾動(dòng)半徑和車(chē)輛前進(jìn)速度。在正常的駕駛狀態(tài)下,V≈wR,因此S≈0。在緊急制動(dòng)的情況下,w=0而V≠0,即S=1,這種情況稱(chēng)為車(chē)輪鎖死。我們不期望車(chē)輪鎖死的情況發(fā)生,因?yàn)樗娱L(zhǎng)了停車(chē)距離并將導(dǎo)致轉(zhuǎn)向控制作用的喪失。</p><p> 1.1 卡車(chē)AB
43、S的一系列問(wèn)題</p><p> ABS的目標(biāo)是通過(guò)控制車(chē)輪滑移率以獲得最大的摩擦力,并且能夠維持轉(zhuǎn)向穩(wěn)定性,以使汽車(chē)在盡可能短的距離內(nèi)停車(chē),同時(shí)維持轉(zhuǎn)向控制。大家知道,摩擦系數(shù)是滑移率S的非線(xiàn)性函數(shù),控制器設(shè)計(jì)的理想目標(biāo)是通過(guò)調(diào)節(jié)車(chē)輪轉(zhuǎn)速w得到與最大摩擦力相對(duì)應(yīng)的最優(yōu)滑移率。為簡(jiǎn)化起見(jiàn),工業(yè)上通常設(shè)定期望滑移率為0.2.給定汽車(chē)速度V和車(chē)輪半徑R,ABS控制問(wèn)題就轉(zhuǎn)化成為通過(guò)調(diào)節(jié)車(chē)輪轉(zhuǎn)速w以使得(1.1)式中
44、的滑移率S達(dá)到期望值0.2.</p><p> 本文中設(shè)計(jì)的控制器主要是針對(duì)卡車(chē)的ABS問(wèn)題,這類(lèi)問(wèn)題不同于小型汽車(chē),具有一定的特殊性。</p><p> ?。?)卡車(chē)ABS執(zhí)行器通常是氣動(dòng)系統(tǒng),這類(lèi)系統(tǒng)比液壓制動(dòng)系統(tǒng)響應(yīng)更慢,更難以控制。制動(dòng)壓力的控制是通過(guò)離心閥的開(kāi)啟與關(guān)閉來(lái)完成的,受控的制動(dòng)壓力可以增大、保持或減小。通過(guò)PWM(脈寬調(diào)制),離心閥的輸出可以用一個(gè)連續(xù)的模擬控制信號(hào)描
45、述,其取值范圍在-1~+1之間,-1表示完全卸除壓力,+1表示施加最大壓力,0表示將壓力維持在一個(gè)恒定的數(shù)值。</p><p> (2)制動(dòng)壓力的檢測(cè)通常是不能實(shí)現(xiàn)的,這將使得氣動(dòng)制動(dòng)系統(tǒng)的控制更加困難。ABS控制器必須將制動(dòng)動(dòng)態(tài)過(guò)程和車(chē)輪動(dòng)態(tài)過(guò)程看做一個(gè)整體的被控對(duì)象來(lái)處理。</p><p> ?。?)汽車(chē)速度或加速度的測(cè)量也不能實(shí)現(xiàn),僅有的反饋信號(hào)是兩路或四路車(chē)輪的角速度。估算汽車(chē)速
46、度將是一個(gè)具有挑戰(zhàn)性的問(wèn)題,因?yàn)槠?chē)速度對(duì)于設(shè)定車(chē)輪參考轉(zhuǎn)速非常必要。一項(xiàng)解決這種問(wèn)題的獨(dú)立研究已經(jīng)實(shí)現(xiàn)。</p><p> (4)拖動(dòng)系統(tǒng)復(fù)雜的動(dòng)態(tài)過(guò)程和卡車(chē)工作條件的多變性對(duì)ABS控制器提出了十分苛刻的要求。卡車(chē)ABS系統(tǒng)整定與調(diào)試過(guò)程比小汽車(chē)的相應(yīng)過(guò)程更加困難。</p><p><b> 1.2 技術(shù)現(xiàn)狀</b></p><p>
47、 在實(shí)際的ABS產(chǎn)品中使用了各種各樣的控制策略,很多的著作論文中也談到了這些控制策略。由于商業(yè)ABS產(chǎn)品所使用的技術(shù)通常作為行業(yè)秘密,很難搞清這些產(chǎn)品的詳細(xì)控制算法。從已有的參考文獻(xiàn)可以看出,一部分算法使用的方法類(lèi)似于“棒-棒”控制。對(duì)于車(chē)輪的減速或滑移率,這些算法通常設(shè)定兩個(gè)或兩個(gè)以上的極限值,制動(dòng)壓力受控于增加、保持或減少狀態(tài)。這些算法將會(huì)在-S曲線(xiàn)上導(dǎo)致峰值搜尋策略,或者強(qiáng)迫車(chē)輪的減速/滑移率在一個(gè)特定的范圍內(nèi)。</p>
48、;<p> 有限狀態(tài)機(jī)構(gòu)法在工業(yè)中被廣泛應(yīng)用?;谥T如車(chē)輪轉(zhuǎn)速、車(chē)輛減速或制動(dòng)壓力這些被測(cè)信號(hào),車(chē)輛的操控以一系列不同的狀態(tài)為特征,如正常駕駛、鎖死和空擋滑行?;谲?chē)輛所處的狀態(tài)和其他的控制邏輯,受控的制動(dòng)壓力可以增大、保持或減小。</p><p> 這兩種方法在很大程度上依賴(lài)于設(shè)計(jì)者和駕駛者的經(jīng)驗(yàn)。在設(shè)計(jì)階段,分析控制器的性能是非常困難的,控制器參數(shù)的整定完全是以試湊法為基礎(chǔ)的。</p&
49、gt;<p> 實(shí)際上,卡車(chē)ABS問(wèn)題可以歸咎為一個(gè)閉環(huán)控制問(wèn)題。正如各種各樣的控制算法所提出的一樣,它是一個(gè)串級(jí)回環(huán)結(jié)構(gòu),如圖1所示。外環(huán)包括車(chē)輛速度估算和期望滑移率計(jì)算,為內(nèi)環(huán)車(chē)輪轉(zhuǎn)速提供了命令信號(hào)。將系統(tǒng)分為外環(huán)和內(nèi)環(huán)的設(shè)計(jì)方法與線(xiàn)性系統(tǒng)的分割原理類(lèi)似,只適用于框圖化的理論分析。</p><p> 圖1..ABS的串級(jí)結(jié)構(gòu)</p><p> 車(chē)輪速度估算與車(chē)輪速度
50、控制器是設(shè)計(jì)的關(guān)鍵。基于文獻(xiàn)【10】的工作所開(kāi)發(fā)出的一種非線(xiàn)性濾波器方法對(duì)于車(chē)輛的速度估算是十分有效的。對(duì)于內(nèi)環(huán)控制,文獻(xiàn)【9】提供了三種方法,分別是PID算法、回路整形算法和NPID算法。PID算法容易設(shè)計(jì)、便于整定,但性能上受約束;基于被控對(duì)象和所設(shè)計(jì)的回路整形控制器的回路整形算法,在仿真時(shí)功能較為強(qiáng)大,但在真正的工業(yè)仿真器上,這樣的控制器難以整定,因?yàn)榭刂破髡{(diào)整時(shí)必須面對(duì)模型中為數(shù)眾多的非線(xiàn)性和干擾因素。</p>&
51、lt;p> 相似的整定困難問(wèn)題也出現(xiàn)在了各種各樣的先進(jìn)的控制策略中,如模糊邏輯、參考模型和神經(jīng)網(wǎng)絡(luò)控制算法等,這些都曾作為ABS系統(tǒng)的控制算法在很多文獻(xiàn)中都有討論。</p><p> ABS控制器開(kāi)發(fā)面臨的一個(gè)主要問(wèn)題是測(cè)試的問(wèn)題,它需要通過(guò)一系列的軟硬件測(cè)試。由于卡車(chē)系統(tǒng)的復(fù)雜性和工作環(huán)境的多變性,需要現(xiàn)場(chǎng)的控制器校準(zhǔn)或整定,這就要求新的控制方案不僅要功能強(qiáng)大,而且便于整定。模糊邏輯控制器和參考模型控
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- aseriesof一系列
- 一系列預(yù)算表模板
- 與sepsis相關(guān)的一系列定義
- 出口促進(jìn)會(huì)使經(jīng)濟(jì)增長(zhǎng)嗎?一系列截面證據(jù)【外文翻譯】
- 一系列新的LA-群.pdf
- 復(fù)合PID-模糊控制在ABS中的應(yīng)用研究.pdf
- 一系列膽系疾病b超.圖片
- 小學(xué)慶六一系列活動(dòng)總結(jié)
- lmmo方法在一類(lèi)非線(xiàn)性特征值問(wèn)題中的應(yīng)用
- 模糊自適應(yīng)PID非線(xiàn)性控制在電液伺服系統(tǒng)中的應(yīng)用研究.pdf
- 一系列多核炔銀配合物的合成與表征.pdf
- 一系列鞘糖脂類(lèi)化合物的合成.pdf
- 對(duì)稱(chēng)理論在解若干非線(xiàn)性問(wèn)題中的應(yīng)用.pdf
- delphi中獲取一系列計(jì)算機(jī)硬件
- 36234.lmmo方法在一類(lèi)非線(xiàn)性特征值問(wèn)題中的應(yīng)用
- 康樂(lè)縣開(kāi)展慶七一系列活動(dòng)
- 構(gòu)造性方法在若干非線(xiàn)性問(wèn)題中的應(yīng)用.pdf
- 無(wú)單元法及其在薄板非線(xiàn)性問(wèn)題中的應(yīng)用.pdf
- 一系列可變質(zhì)物品的兩貨棧庫(kù)存模型研究.pdf
- 模糊控制在多變量非線(xiàn)性系統(tǒng)中的應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論