版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 英文文獻(xiàn)</b></p><p> The Global Positioning System</p><p> The global Positioning System (GPS) is revolutionizing surveying technology, Like its predecessor , the TEANSIT
2、 Doppler system, GPS shifts the scene of surveying operations from ground-to-ground measurements to ground-to-sky , with obvious implications : intervisibility of marks is no longer a criteion for their location ; operat
3、ions are possible in nearly all kinds of weather and be performed during day or night ; and the skills required to utilise the technology are different both in field ope</p><p> GPS was designed primarily a
4、s a navigation system, to satisfy both military and civilian needs for real-time positioning. This positioning is accomplished through the use of coded information, essentially clever timing signals, transmitted by the s
5、atellites. Each GPS satellite transmits a unique signal on two L-band frequencies: A at 1575.42 MHz and B at 1227.60 MHz(equivalent to wavelengths of approximately 19 and 24 cm, respectively).The satellite signals consis
6、t of the L-band carrier waves mo</p><p> There are currently eight usable satellites in orbit. These are the experimental, ”Block 1” satellites, which will be progressively replaced as the “block 2”, operat
7、ional satellites are placed into orbit beginning in 1986.By 1989 the system should be complete, with 18 satellites in six orbital planes----at about 20200 km altitude, allowing for simultaneous visibility of at least fou
8、r satellites at any time of day almost anywhere in the world. The present constellation of satellites is configured</p><p> As it happens, the observation geometry is equally favorable in Australia, and it
9、is possible now to obtain surveying accuracies equal to those obtainable when the system is fully configured, but only for about six hours per day, At the time of writing (November 1985),the period of maximum mutual visi
10、bility of the satellites in eastern Australia is between 6 pm and mid-night local time The period regresses by 4minutes per day (or 2 hours per month), returning to the same times a year from now. T</p><p>
11、 As with TRANSIT , much higher accuracies are obtained in relative positioning from observations made simultaneously at two observing stations. Consequently , unless otherwise indicated , all discussion concerning data a
12、cquisition and processing will assume a two----receiver configuration. This is often referred to as the differential mode. The position differences so determined constitute the baseline vector or simply the baseline betw
13、een the points occupied by two receivers .</p><p> All satellite positioning systems provide ground coordinates of a receiver (or the baseline vector between a pair of receivers) in an earth—centered coordi
14、nate system, The orientation of the system is determined by the tabulated coordinates or ephemeredes of the GPS satellites. In order to relate coordinates determined by GPS surveying to the local geodetic datum a transfo
15、rmation relationship needs to be established.</p><p> The following factors influence the final positioning accuracy obtainable with GPS:</p><p> The precision of the measurement and the recei
16、ver---satellite geometry.</p><p> The measurement processing technique adopted.</p><p> The accuracy with which atmospheric and ionospheric effects can be modeled.</p><p> The ac
17、curacy of the satellites ephemeredes.</p><p> Each of these factor is discussed briefly in the next three sections.</p><p> GPS Measurement Types. GPS measurement can be made using either the
18、 carrier signal or the codes. Code measurements are called pseudo-ranges and can be based on either the P code or the S code. Knowledge of the properties of each of these types of measurements is necessary for understand
19、ing and evaluating GPS instruments. </p><p> Pseudo-ranges are the simplest to visualize geometrically , as they are essentially a measurement of distance contaminated by clock errors. Throughout this monog
20、raph, we use the terms clock , frequency standard and oscillator to denote the same thing , namely , a device for precisely measuring a time interval. When four satellites are observed simultaneously , it is possible to
21、determine the three-dimensional position of the ground receiver, and the receiver clock offset, at a single epoch . Thi</p><p> Carrier phase can be determined from the code-modulated signal either by using
22、 the code or other techniques . The L1 signal , which has both P code and S code modulation , can thus be tracked with S or P code receivers or with codeless receivers . The L2 signal , useful for removing ionospheric ef
23、fects for very precise applications (< 2 ppm for relative positioning ) , has no S code modulation , so that receivers for these applications must either have P code capability or operate without code .</p><
24、;p> It is also possible to track the phase of the 10.23 MHz P code transition signal or P code sub-carrier without knowledge of the codes . The long wavelength ( approximately 30 meter ) of this signal compared with
25、the L-band carrier allows relatively easy resolution of the integer-cycle ambiguity , producing in effect a pseudo-range measurement . However , the long wavelength makes the measurements more susceptible to multipath ef
26、fects , roughly to the same degree as pseudo-range measurements . </p><p><b> 中文文獻(xiàn)</b></p><p> GPS全球衛(wèi)星定位系統(tǒng)</p><p> 全球性定位系統(tǒng)(GPS) 是一種革命化勘測(cè)技術(shù), 像它的前輩, TRANSIT 子午儀多普勒系統(tǒng)(
27、TRANSIT), GPS 轉(zhuǎn)移勘測(cè)的操作場(chǎng)面從地地測(cè)量到地面對(duì)天空測(cè)量, 以明顯的涵義: 幾乎所有是操作都可以在各種天氣和晝夜完成;在野外觀測(cè)和數(shù)據(jù)處理中所需要的技能和技術(shù)是不同的。 但GPS 不僅僅是替換子午儀多普勒系統(tǒng)(TRANSIT)。 在觀測(cè)衛(wèi)星是能同時(shí)看到多顆衛(wèi)星,使得各種主要誤差得到了有效消除,因而在一公里到數(shù)千公里的距離上,GPS的相對(duì)定位精度可能達(dá)到1ppm或者更好。 這意味著, GPS地面技術(shù)能應(yīng)用在短距離上,而且在
28、長(zhǎng)距離GPS獲得高精度結(jié)果的時(shí)間比子午儀多普勒系統(tǒng)(TRANSIT)要短。</p><p> GPS 被設(shè)計(jì)了主要作為導(dǎo)航系統(tǒng), 滿(mǎn)足兩個(gè)對(duì)實(shí)時(shí)安置的軍事和平民需要。 這安置是完成通過(guò)對(duì)被編碼的信息的用途, 根本上聰明定時(shí)信號(hào), 由衛(wèi)星傳輸。 各枚GPS衛(wèi)星傳輸一個(gè)獨(dú)特的信號(hào)在二個(gè)L 波段頻率: L1 是1575.42 兆赫和L2是1227.60 MHz(各自大約19 和24 cm 波長(zhǎng)), 衛(wèi)星信號(hào)包括L 波
29、段載體波浪調(diào)整以"標(biāo)準(zhǔn)" 或S 代碼(以前稱(chēng)C/代碼),導(dǎo)航電文信息包含在P碼中,衛(wèi)星的坐標(biāo)作為時(shí)間,也就是 "廣播星歷表" 。 S碼中的信息主要是為民用服務(wù),產(chǎn)生范圍測(cè)量精確度大約10 米, 航海也由這個(gè)代碼提供標(biāo)準(zhǔn)定位服務(wù), P代碼主要是為軍事和被選擇的某些民用方面服務(wù),產(chǎn)生范圍測(cè)量精度大約1米,航海由這個(gè)代碼提供精確定位服務(wù) 雖然兩個(gè)代碼都能用來(lái)測(cè)量,但有一種更加準(zhǔn)確的方法是測(cè)量載體信號(hào),
30、因此, 我們不會(huì)談?wù)撛敿?xì)代碼的特征在這篇專(zhuān)題論文里。 </p><p> 目前有八枚能用的衛(wèi)星在軌道運(yùn)行。從1986年開(kāi)始,“Block 1”試驗(yàn)衛(wèi)星將被“Block 2”工作衛(wèi)星取代。到1989年,該系統(tǒng)就應(yīng)該建立完成了,將有18顆衛(wèi)星在距離地球20200公里高度的六個(gè)軌道運(yùn)行,如果這樣的話,在世界的任何一個(gè)地方任何時(shí)間都至少能接收到4顆以上的衛(wèi)星。在當(dāng)?shù)貢r(shí)間下午6點(diǎn)和午夜之間,衛(wèi)星的最大相互可見(jiàn)性出現(xiàn)在東
31、澳大利亞。這個(gè)時(shí)間每天退后4分鐘(也就是一個(gè)月退后2小時(shí)),從現(xiàn)在返回到次年。當(dāng)從1985年晚些時(shí)候衛(wèi)星再被發(fā)射后, 這個(gè)有用的可見(jiàn)性的期間將增加。</p><p> 正如子午儀多普勒系統(tǒng),GPS在兩個(gè)測(cè)站上可以同時(shí)獲得更高精度的相對(duì)定位結(jié)果。如果這樣,所有的關(guān)于數(shù)據(jù)采集和處理的任務(wù)將由一臺(tái)雙頻接收機(jī)承擔(dān),這就是常說(shuō)的差分定位。 由這樣確定的定位誤差構(gòu)成了基礎(chǔ)線傳染媒介或簡(jiǎn)單地基礎(chǔ)線,即由兩臺(tái)接收機(jī)所確定的。&
32、lt;/p><p> 在地心坐標(biāo)系中,所有衛(wèi)星定位系統(tǒng)提供接收機(jī)的地面坐標(biāo)(或基礎(chǔ)線傳染媒介在一對(duì)接收器之間),系統(tǒng)的取向是堅(jiān)定的,由GPS 衛(wèi)星制成表的坐標(biāo)或星歷。為了和被確定的坐標(biāo)系有聯(lián)系,本機(jī)關(guān)系坐標(biāo)的確定由GPS 勘測(cè)變革關(guān)系需要被建立的測(cè)地學(xué)基準(zhǔn)。以下因素將影響GPS獲得最后精確定位的準(zhǔn)確性:</p><p> (1) 儀器的精度和被接收到的衛(wèi)星的幾何位置。 (2) 所采取的測(cè)
33、量處理技術(shù)。</p><p> (3) 大氣層和電離層的影響。 (4) 衛(wèi)星星歷的準(zhǔn)確性。</p><p> 以上這些因素將簡(jiǎn)要地被談?wù)撛谙氯齻€(gè)部分。</p><p> GPS 測(cè)量類(lèi)型。GPS 測(cè)量可以使用載體信號(hào)或代碼。代碼測(cè)量叫作偽距測(cè)量,并且也能根據(jù)或P 代碼或S 代碼。掌握每種測(cè)量類(lèi)型對(duì)你了解和評(píng)估GPS儀器是非常必
34、要的。 </p><p> 偽距觀測(cè)在幾何形象上是最簡(jiǎn)單的,如同它們?cè)诰嚯x測(cè)量時(shí)被時(shí)鐘誤差影響。在這篇專(zhuān)題論文過(guò)程中, 我們使用期限時(shí)鐘, 頻率標(biāo)準(zhǔn)和擺動(dòng)器表示同樣事件, 即一個(gè)設(shè)備為精確地測(cè)量間隔時(shí)間。當(dāng)四顆衛(wèi)星在空中被同時(shí)觀察到時(shí),它可以確定地面接收機(jī)的三維位置以及接收機(jī)時(shí)鐘垂距。在測(cè)量技術(shù)中,這是簡(jiǎn)單的距離測(cè)量,由衛(wèi)星作為控制站。在這種技術(shù)中,它的精度由空中的4顆衛(wèi)星和接收機(jī)所組成的幾何圖形來(lái)確定。 最佳
35、的幾何位置將是何時(shí)衛(wèi)星是在每個(gè)四個(gè)象限和海拔角度在40度到70度。 但是, 偽距觀測(cè)的精度沒(méi)有載波相位測(cè)量的精度高。為了達(dá)到10 米位置準(zhǔn)確性從P編碼測(cè)量或100 米從S 代碼測(cè)量(滿(mǎn)足航海要求),它所設(shè)計(jì)的代碼結(jié)構(gòu)必須要達(dá)到米級(jí)定位精度。盡管如此,1989 年當(dāng)系統(tǒng)變得完全可使用時(shí) ,更加精確的P代碼可能將被編成密碼, 并且可以因此不能作為非軍事用途。另外一個(gè)影響偽距觀測(cè)精度的是出現(xiàn)多路徑效應(yīng),那是衛(wèi)星的某一分?jǐn)?shù)傾向發(fā)信號(hào)到達(dá)接收器天
36、線通過(guò)反射地面或其它表面。多路徑效應(yīng)的作用大小和署名依靠天線,天線的設(shè)計(jì)和高度在地面之上,但大概不能被減少在幾個(gè)公寸之下以實(shí)用配置。 </p><p> 載波測(cè)量階段可能是堅(jiān)定的從代碼被調(diào)整的信號(hào)或者由使用代碼或其它技術(shù)。L1 信號(hào)被P 代碼和S 代碼模塊化, 因而被跟蹤以S 或P 代碼接收器或與codeless 接收器。 L2 信號(hào)用來(lái)去除電離層作用,非常精確應(yīng)用(< 2 ppm 為相對(duì)安置), 沒(méi)有S
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--全球衛(wèi)星定位系統(tǒng)
- 全球衛(wèi)星定位系統(tǒng)外文翻譯
- 全球衛(wèi)星定位系統(tǒng)(gps)測(cè)量在城市建設(shè)中的應(yīng)用
- 41357.基于gps全球衛(wèi)星定位系統(tǒng)的商品砼生產(chǎn)調(diào)度系統(tǒng)設(shè)計(jì)
- GPS(全球衛(wèi)星定位系統(tǒng))在公路勘測(cè)中的應(yīng)用研究.pdf
- 全球衛(wèi)星定位系統(tǒng)在土地測(cè)量中的應(yīng)用分析
- 全球衛(wèi)星定位系統(tǒng)(GPS)在掌上電腦上的應(yīng)用研究與實(shí)現(xiàn).pdf
- 用于全球衛(wèi)星定位系統(tǒng)的三頻微帶天線.pdf
- 論全球衛(wèi)星定位系統(tǒng)GPS及其在現(xiàn)代交通運(yùn)輸中的應(yīng)用.pdf
- 全球衛(wèi)星定位列車(chē)調(diào)度系統(tǒng)車(chē)載臺(tái)設(shè)計(jì).pdf
- gps衛(wèi)星定位系統(tǒng)
- 中國(guó)北斗衛(wèi)星導(dǎo)航系統(tǒng)——世界第三套全球衛(wèi)星導(dǎo)航系統(tǒng)(于gps對(duì)比)
- 全球衛(wèi)星導(dǎo)航系統(tǒng)的法律規(guī)制.pdf
- gps通信系統(tǒng)外文翻譯---全球移動(dòng)通信系統(tǒng)
- 2018中山大學(xué)全球衛(wèi)星定位原理考研真題
- 多模全球衛(wèi)星導(dǎo)航系統(tǒng)天線研究.pdf
- 全球定位系統(tǒng)gps
- 關(guān)于gnss全球衛(wèi)星導(dǎo)航整合技術(shù)探討
- sc∕t 7008-1996 漁用全球衛(wèi)星導(dǎo)航儀(gps)通用技術(shù)條件
- 全球定位系統(tǒng)的介紹 外文翻譯
評(píng)論
0/150
提交評(píng)論