版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 文 獻(xiàn) 翻 譯</p><p> 二級(jí)學(xué)院 電子信息與自動(dòng)化學(xué)院 </p><p> 班 級(jí) 108070102 </p><p> 學(xué)生姓名 學(xué) 號(hào) 10807010213 </p><p>
2、 譯 文 要 求</p><p> 1、譯文內(nèi)容必須與課題(或?qū)I(yè))內(nèi)容相關(guān),并需注明詳細(xì)出處。</p><p> 2、外文翻譯譯文不少于2000字;外文參考資料閱讀量至少3篇(相當(dāng)于10萬外文字符以上)。</p><p> 3、譯文原文(或復(fù)印件)應(yīng)附在譯文后備查。</p><p> 譯 文 評(píng) 閱</p>
3、<p> 導(dǎo)師評(píng)語(應(yīng)根據(jù)學(xué)?!白g文要求”,對(duì)學(xué)生外文翻譯的準(zhǔn)確性、翻譯數(shù)量以及譯文的文字表述情況等作具體的評(píng)價(jià))</p><p> 指導(dǎo)教師: </p><p> 年 月 日 </p><p> 基于ZigBee無線傳感器網(wǎng)絡(luò)的礦工的位置探測(cè)研究</p><p> 張秀萍, 韓廣杰,
4、 朱昌平, 竇燕, 陶劍鋒</p><p> 河海大學(xué)計(jì)算機(jī)與信息工程學(xué)院</p><p><b> 中國常州</b></p><p> E-mail:zhangxiup@hhuc.edu.cn Zhucp315@126.com</p><p> 摘要:隨著計(jì)算機(jī)的飛速發(fā)展,通信和網(wǎng)絡(luò)技術(shù),特別是無線傳感器和嵌入
5、式技術(shù)的應(yīng)用,使得無線傳感器網(wǎng)絡(luò)(WSNs)技術(shù)在產(chǎn)業(yè)領(lǐng)域和我們的日常生活得到了廣泛關(guān)注?;贏RM7TDMI-S CPU和ZigBee 的WSNs在提速和優(yōu)化網(wǎng)絡(luò)移動(dòng)節(jié)點(diǎn)的應(yīng)用,豐富的信息采集中,以及在通信中實(shí)時(shí)時(shí)間的協(xié)調(diào)均有可取之處,具有低功耗連續(xù)作業(yè)特點(diǎn),因此它是非常適合用于確定礦工在地下的位置。本文提出和分劃WSN的網(wǎng)絡(luò)計(jì)劃及信息處理與通信技術(shù),重點(diǎn)專注于實(shí)時(shí)協(xié)作。通過傳感器準(zhǔn)確獲得礦工的移動(dòng)信息。之后的位置信息傳送可
6、靠的監(jiān)控中心。不斷變化的運(yùn)行測(cè)試結(jié)果表明沒有信息丟失或者沒有未被采集到的信息。因此,這個(gè)計(jì)劃是穩(wěn)定和有效的,將在煤礦安全中發(fā)揮積極作用,在我看來這正是Zigbee無線傳感器網(wǎng)絡(luò)的正確特點(diǎn)。</p><p> 關(guān)鍵詞:ZigBee的ARM7TDMI-S內(nèi)核; CC2420的; 無線傳感器網(wǎng)絡(luò) ;礦工位置確定</p><p><b> 簡(jiǎn)介</b>
7、;</p><p> 無線傳感器網(wǎng)絡(luò)(WSNs)是規(guī)模大,無線自組織網(wǎng)絡(luò)。它是整合計(jì)算機(jī)通信,網(wǎng)絡(luò)技術(shù),嵌入式MCU和無線傳感器技術(shù),具有感知和溝通能力。【1】節(jié)點(diǎn)有低低成本,小尺寸特點(diǎn)。其中大部分可以工作區(qū)域傳播,收集數(shù)據(jù),并進(jìn)行處理數(shù)據(jù)和通信。無線傳感器節(jié)點(diǎn)通常工作在無線電頻率(RF)頻段。節(jié)點(diǎn)構(gòu)成一個(gè)分層架構(gòu)現(xiàn)場(chǎng)監(jiān)測(cè)數(shù)據(jù)的網(wǎng)絡(luò)。它通常適用在工業(yè),農(nóng)業(yè),遠(yuǎn)程醫(yī)療和環(huán)境監(jiān)測(cè)。</p><
8、p> 我們都知道,煤炭生產(chǎn)中的威脅復(fù)雜的工作條件,如有毒氣體,透水,塌陷,頂板等?!?】一旦發(fā)生事故發(fā)生時(shí),它會(huì)危及礦工的生命。因此它是地面人員的當(dāng)務(wù)之急,要明確礦工的確切位置,以便為及時(shí)采取措施。因此為礦工成立一個(gè)無線傳感器網(wǎng)絡(luò)監(jiān)控礦井有很大的應(yīng)用價(jià)值。</p><p><b> 方案優(yōu)選</b></p><p> 礦工的位置監(jiān)測(cè)系統(tǒng)主要技術(shù)規(guī)范要求歸納
9、如下:(1)定位精度為10米。煤礦巷道狹窄,彎曲復(fù)雜所以安全監(jiān)控系統(tǒng)需要捕捉監(jiān)測(cè)點(diǎn)。(2)低數(shù)據(jù)速率。發(fā)送數(shù)據(jù)的量要小,但必須具有高可靠性。(3)低功耗。事實(shí)上較大的電源在地下是不允許使用的(4)成本低監(jiān)控系統(tǒng)設(shè)備?!?】</p><p> 幾種無線傳輸模式的比較如表1所示。</p><p> ZigBee技術(shù)是復(fù)雜性低,低功耗,低數(shù)據(jù)速率,低成本,無線通信技術(shù),它采用IEEE802
10、.15.4協(xié)議。它可以嵌入在設(shè)備中,具有地理位置的功能。它工作在數(shù)據(jù)傳輸速率為250 kbps。每個(gè)節(jié)點(diǎn)的范圍是通常在10?100米。范圍可高達(dá)有1?3公里通過增加RF發(fā)射功率。它可以迅速作出反應(yīng)。從睡眠狀態(tài)只需15ms的工作狀態(tài)和30ms的訪問網(wǎng)絡(luò)。那定義了三個(gè)網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu),包括星型拓?fù)浣Y(jié)構(gòu),集群拓?fù)浜途W(wǎng)狀拓?fù)浣Y(jié)構(gòu)。節(jié)點(diǎn)多達(dá)65000,可以組織大容量數(shù)據(jù)傳輸網(wǎng)絡(luò)平臺(tái)。三級(jí)安全模式,使用靈活,以確定其安全屬性。免費(fèi)的專利協(xié)議,免執(zhí)照頻段
11、。 ZigBee的工作在2.4GHz ISM頻段,采用直接序列擴(kuò)頻頻譜(DSSS)調(diào)制?!?】</p><p> 表1無線傳輸方式的比較</p><p> 考慮上述因素,與ZigBee的無線傳感器網(wǎng)絡(luò)技術(shù)能適應(yīng)長期的礦工位置在低成本,低數(shù)據(jù)速率,低功耗的監(jiān)控消費(fèi),可靠性高,所以這項(xiàng)計(jì)劃是通過在coalminer上的定位系統(tǒng)。在設(shè)計(jì)過程中,首先確定網(wǎng)絡(luò)結(jié)構(gòu),然后設(shè)備選擇和相關(guān)電
12、路設(shè)計(jì),包括無線網(wǎng)絡(luò),接收模塊采用MEGA128和CC2420,變電站模塊應(yīng)用LPC2114等。最后是通信協(xié)議和相關(guān)軟件設(shè)計(jì)和調(diào)試。</p><p><b> 無線傳感器網(wǎng)絡(luò)設(shè)計(jì)</b></p><p> 系統(tǒng)功能:(1)實(shí)現(xiàn)井下礦工定位,及時(shí)卻定自己的位置以便在事故發(fā)生時(shí),提高救援效率。(2)管理礦工進(jìn)入或外出礦井的時(shí)間和頻率,得到了礦工的動(dòng)態(tài)位置信息,從而提高
13、管理績(jī)效。(3)追溯歷史數(shù)據(jù),統(tǒng)計(jì)和分析決策。</p><p> A 無線傳感器網(wǎng)絡(luò)結(jié)構(gòu)和硬件設(shè)備的設(shè)計(jì)</p><p> 我們的設(shè)計(jì)采用混合拓?fù)浣Y(jié)構(gòu)。在目前比較大的電源不允許在礦井使用。星型拓?fù)浣Y(jié)構(gòu)網(wǎng)絡(luò)是比較容易控制并同步與低功率消耗,因此它在第一層應(yīng)用??偩€拓?fù)浣Y(jié)構(gòu)應(yīng)用于第二層,因?yàn)椴ㄐ蝹鬏敂?shù)據(jù)在這種環(huán)境下有失真。</p><p> ZigBee無線傳感
14、器網(wǎng)絡(luò)設(shè)計(jì)礦工定位有四個(gè)部分:</p><p> 1)監(jiān)控和管理軟件平臺(tái)(主節(jié)點(diǎn)):負(fù)責(zé)收集人員從網(wǎng)絡(luò)位置信息,追溯數(shù)據(jù),統(tǒng)計(jì)和分析,并在顯示結(jié)果圖形的形式。</p><p> 2)監(jiān)視變電站:這是全功能負(fù)責(zé)接收信息的設(shè)備節(jié)點(diǎn),從無線接收器和輸出的移動(dòng)節(jié)點(diǎn)數(shù)據(jù)處理的主節(jié)點(diǎn)。</p><p> 3)無線接收器(無線傳感器節(jié)點(diǎn)):這是負(fù)責(zé)檢測(cè)信息礦工的工作區(qū)域內(nèi),
15、并把它發(fā)送到按照與通信的變電站協(xié)議。</p><p> 4)無線代碼發(fā)射器:減少功能的設(shè)備節(jié)點(diǎn),可以很容易地固定在礦燈盒,頭盔,腰帶,或放在口袋里。代碼發(fā)射器發(fā)出的射頻信號(hào)進(jìn)行礦工“身份信息。當(dāng)?shù)V工是在移動(dòng)中工作區(qū)的無線接收器,他的信息將由接收機(jī)接收被轉(zhuǎn)移到變電站?!?】</p><p> 系統(tǒng)結(jié)構(gòu)如圖1所示。</p><p> 在地面上的人員定位系統(tǒng)監(jiān)控主機(jī)
16、組成,備份計(jì)算機(jī),交換機(jī),服務(wù)器,通信接口,避雷器及其他外圍設(shè)備。監(jiān)控中心PC和相應(yīng)的存儲(chǔ)和分析數(shù)據(jù)數(shù)據(jù)庫系統(tǒng),然后可以得到每個(gè)礦工的立場(chǎng)在任何時(shí)候的信息。人員定位系統(tǒng)地下是無線傳感器網(wǎng)絡(luò),它是變電站,無線接收器,代碼發(fā)射器組成,礦用隔爆型和本質(zhì)安全電源等,這將完成收集和傳輸?shù)V工的位置,時(shí)間等信息。硬件設(shè)計(jì)人員定位系統(tǒng)地下將詳細(xì)介紹如下。</p><p><b> B.變電站設(shè)計(jì)</b>&
17、lt;/p><p> 煤礦變電站是第一級(jí)子節(jié)點(diǎn)。每變電站的設(shè)計(jì),加載6個(gè)無線接收器。它定期檢測(cè)指令發(fā)送到接收確定無線接收的信息是要在同一時(shí)間收到的,然后接收礦工的身份從無線接收的信息。變電站處理,存儲(chǔ)和顯示接收到的數(shù)據(jù)。</p><p> 它會(huì)等待命令從主機(jī)電腦和發(fā)送在地面上的數(shù)據(jù)監(jiān)控中心通過現(xiàn)場(chǎng)總線。通常有數(shù)百名礦工在一個(gè)煤礦,礦井隧道錯(cuò)開在短短公里。所以11變電站的設(shè)計(jì),它可以加載最多
18、66個(gè)無線接收器。</p><p> 在這個(gè)方案中,LPC2114的CPU選擇變電站的設(shè)計(jì)【6】。 LPC2114是基于一個(gè)16/32-bit的ARM7TDMI-S CPU與實(shí)時(shí)仿真和嵌入式跟蹤支持,其緊湊的64引腳封裝,低功耗,多個(gè)32位定時(shí)器,4通道10位ADC,PWM通道和46個(gè)快速GPIO線多達(dá)9個(gè)外部中斷引腳。多個(gè)串行接口,包括兩個(gè)UART(16C550),快速I2C和兩個(gè)SPI。
19、隨著廣泛的串行通信接口,這是非常適合接收數(shù)據(jù)。</p><p><b> C.無線接收器設(shè)計(jì)</b></p><p> 當(dāng)?shù)V工與無線移動(dòng)代碼發(fā)射通過一個(gè)無線接收器,代碼發(fā)射器礦工的身份證號(hào)碼的信息傳遞到無線接收器,然后開始分析信息。當(dāng)檢測(cè)指令到達(dá)??時(shí),它會(huì)按照數(shù)據(jù)發(fā)送到變電站建立協(xié)議。 Atmel的ATmega128的芯片公司用于微控制器,智能射頻Ch
20、ipcon公司的CC2420芯片ZigBee功能是用來作為無線收發(fā)器。ATmega128是一個(gè)低功耗的CMOS 8位增強(qiáng)的AVR RISC微控制器的基礎(chǔ)上結(jié)構(gòu)。 CC2420是一個(gè)真正的單芯片2.4GHz的IEEE802.15.4標(biāo)準(zhǔn)的射頻收發(fā)器的低功耗設(shè)計(jì)與低電壓無線應(yīng)用。它包括一個(gè)數(shù)字直接序列擴(kuò)頻提供有效數(shù)據(jù)速率為250kbps。這是適合兩個(gè)全功能設(shè)備(FFD)和減少無線傳感器功能設(shè)備(RFD)網(wǎng)絡(luò)【7】。配置接口和CC
21、2420的發(fā)送/接收FIFO的訪問通過4線SPI接口(SI,SO,SCLK,CSN)。如上面提到的,很多優(yōu)秀的功能使CC2420的和MEGA128特別適合我們的立場(chǎng)系統(tǒng)。 MEGA128和CC2420之間的接口如圖2所示。</p><p> 無線接收器溝通與變電站通過RS485。數(shù)據(jù)傳輸波特率設(shè)置為1200bps。最大通信距離之間變電站和無線接收到5公里。</p><p>
22、75LBC184芯片采用的是電壓的接收器轉(zhuǎn)換之間以RS485和RS232UART的CPU引腳傳輸數(shù)據(jù)。當(dāng)DE引腳75LBC184的高層次,轉(zhuǎn)遞是有效的,后,CPU的UART引腳傳輸數(shù)據(jù)的無線接收器。當(dāng)/ RE的75LBC184針是低層次的,接受是有效的,那么CPU可以接收數(shù)據(jù)從RS485。如果接收機(jī)的地址符合檢測(cè)指令的地址,將接收器配置發(fā)送狀態(tài)和發(fā)回?cái)?shù)據(jù)塊變電站。</p><p> 圖2 CC2420
23、的單片機(jī)接口</p><p><b> D.電源的設(shè)計(jì)</b></p><p> 防爆和安全電源常用在可燃?xì)怏w和煤塵的危險(xiǎn)環(huán)境。它采用雙重保護(hù)措施過電壓和過電流,三18DC電壓輸出,500?千毫安的電流輸出。它可以提供功率為1變電站和6接收器,在同一時(shí)間,緊湊的尺寸和重量輕。</p><p><b> E.無線代碼發(fā)射器<
24、/b></p><p> 礦井代碼發(fā)射器傳輸識(shí)別獨(dú)立的數(shù)字代碼的時(shí)間間隔(每3秒)。代碼用于識(shí)別人員信息。代碼發(fā)射器組成的高頻發(fā)射(調(diào)制器),微控制器,電池和天線。</p><p> 這使得利用ZigBee技術(shù),2.4GHz的發(fā)射頻率,F(xiàn)SK調(diào)制,傳輸功率小于0 dBm時(shí),電源電壓2.0?3.4V。它有兩種狀態(tài):工作與睡眠。目前的工作是少小于1mA,休眠電流小于10,以
25、降低其耗電量。與微型封裝可固定在礦工鈥檚燈箱,頭盔,腰帶,或口袋里。如果車輛使用的,它應(yīng)該被固定在非金屬零件上,以及盡可能高的安全地帶。</p><p> 通信軟件設(shè)計(jì)變電站和無線接收器</p><p><b> 時(shí)間調(diào)整</b></p><p> 實(shí)時(shí)通信之間的合作節(jié)點(diǎn)是必需的,因此需要時(shí)間同步。</p><p>
26、; 時(shí)間調(diào)整過程:系統(tǒng)啟動(dòng)時(shí),變電站將收到指令調(diào)整時(shí)間。然后將它發(fā)送到一號(hào)接收機(jī)。收到后從1號(hào)確認(rèn),然后將它發(fā)送到2號(hào)接收機(jī),依此類推,直到最后一個(gè)。如果有不承認(rèn)從一個(gè)接收器,變電站將等待一段時(shí)期時(shí)間,然后去到下一個(gè)。如果一個(gè)接收器沒有承認(rèn)的3倍,它會(huì)被標(biāo)示“故障”的和變電站液晶顯示。調(diào)整時(shí)間后,變電站檢測(cè)反過來接收機(jī)并收集礦工的身份識(shí)別信息。接收器發(fā)送數(shù)據(jù)塊到變電站,同時(shí)變電站傳輸接受信息以相應(yīng)的接收器。只有接受信息被接收器成功接收
27、,變電站確認(rèn)數(shù)據(jù)塊是否是有效的。</p><p><b> 通信軟件設(shè)計(jì)</b></p><p> 通信軟件的設(shè)計(jì)應(yīng)考慮到以下三個(gè)因素:</p><p> 1)無線接收器接收無線電信號(hào)代碼發(fā)射器,并分析成數(shù)字信號(hào)。微接收器控制單元(MCU),有4線SPILPC2114的CPU接口,具有2線SPI接口,所以數(shù)據(jù)通過SPI總線傳輸?shù)阶冸娬拘问?/p>
28、的外部中斷。</p><p> 2)發(fā)送數(shù)字信號(hào)顯示電路。LPC2114器件支持I2C總線傳輸,所以可以傳輸數(shù)據(jù),顯示驅(qū)動(dòng)電路通過I2C總線。</p><p> 3)包裝數(shù)據(jù)。如果監(jiān)控中心發(fā)出定期檢測(cè)的指令,將數(shù)據(jù)傳輸?shù)阶冸娬?。?shí)時(shí)坐標(biāo)是整個(gè)系統(tǒng)所必需的,使數(shù)據(jù)傳輸實(shí)時(shí)。考慮代碼發(fā)射器傳輸數(shù)據(jù)之一時(shí)間每3秒,數(shù)據(jù)打包,每8秒鐘根據(jù)協(xié)議,在定時(shí)器中斷,使接收到的數(shù)據(jù)可以傳輸?shù)阶冸娬镜腃P
29、U時(shí)間。</p><p> 基于上述分析,有4個(gè)中斷傳感器節(jié)點(diǎn)軟件</p><p><b> 外部中斷數(shù)據(jù)傳輸。</b></p><p> 數(shù)據(jù)顯示I2C中斷。</p><p><b> 包的定時(shí)器中斷。</b></p><p> UART中斷接受定期檢測(cè)指令。&l
30、t;/p><p> 變電站的CPU收到的數(shù)據(jù)塊需要有時(shí)間的數(shù)據(jù),所以在變電站和接收時(shí)間應(yīng)該是相同的。時(shí)間數(shù)據(jù)來自監(jiān)測(cè)中心通過LPC2114的CPU MEGA128單片機(jī)。</p><p><b> 數(shù)據(jù)包裝協(xié)議</b></p><p> 變電站和接收器之間的數(shù)據(jù)封裝協(xié)議【8】設(shè)計(jì)的兩個(gè)方面。</p><p>
31、 1)變電站發(fā)出了如下的說明。</p><p> a)調(diào)整指令??蚣芙Y(jié)構(gòu):幀頭(5 FF)+接收號(hào)(1字節(jié))+指令(23)號(hào)(1字節(jié))+年+月(1字節(jié))+日(1字節(jié))+時(shí)間(1字節(jié))+分鐘(1字節(jié))+(1字節(jié))+檢查(2個(gè)字節(jié))。</p><p> b)定期檢測(cè)指令??蚣芙Y(jié)構(gòu):幀頭(5 FF)+接收號(hào)(1字節(jié))+指令第(20)+檢查(2個(gè)字節(jié))。</p>
32、;<p> c)確認(rèn)指令的信息。幀結(jié)構(gòu):幀頭(5 FF)+接收器號(hào)(1字節(jié))+指令號(hào)(21)+檢查(2個(gè)字節(jié))。</p><p> 2)接收器發(fā)回如下說明</p><p> a)調(diào)整時(shí)間指令的識(shí)別。幀結(jié)構(gòu):幀頭(5 FF)+接收器號(hào)(1字節(jié))+指令號(hào)(23)+檢查(2個(gè)字節(jié))。</p><p> b)定期檢測(cè)指令的識(shí)別。幀結(jié)
33、構(gòu):幀頭(5 FF)+號(hào)接收器(1字節(jié))+指令號(hào)(20)+天(1字節(jié))+(1字節(jié))+分鐘(1字節(jié))+第二(1字節(jié))+人數(shù)(1字節(jié))+識(shí)別編號(hào)1(2字節(jié))+ ...+識(shí)別碼數(shù)n(2字節(jié))+檢查(2字節(jié))。</p><p> c)信息識(shí)別確認(rèn)指令。幀結(jié)構(gòu):幀頭(5 FF)+號(hào)接收器(1字節(jié))+指令號(hào)(21)+檢查(2個(gè)字節(jié))。</p><p><b> D.網(wǎng)
34、絡(luò)演習(xí)</b></p><p> 在這個(gè)人員有11個(gè)變電站全球定位系統(tǒng),可以最多裝入一個(gè)變電站6接收機(jī)。因此,網(wǎng)絡(luò)最多可以監(jiān)測(cè)11x6xn礦工。隨著變電站和無線接收器之間的溝通,接收器可能隨機(jī)下降。一旦下降,將不再是檢測(cè)中斷接口。這種現(xiàn)象是長時(shí)間的溝通后發(fā)現(xiàn),這是很難確定是所使用仿真工具的原因。</p><p> 通過查找表和分析,可以發(fā)現(xiàn)故障原因。在時(shí)間序列故障如圖3所示
35、。</p><p><b> 圖3故障的時(shí)間序列</b></p><p> 由于程序的運(yùn)行時(shí)間是不一樣的在不同的接收器,時(shí)間上分析通訊協(xié)議指令也不同。有人完成早一點(diǎn),而其他一點(diǎn)點(diǎn)更高版本。例如,變電站發(fā)送出查詢?cè)赥1,接收指令0X01地址飾面分析T2指令。如果它的地址符合查詢條件,它開始響應(yīng)時(shí)間t3,而0x04的完成接收分析指令T4。接收與回應(yīng)0X01結(jié)束在T5。
36、在時(shí)間T3和T4,數(shù)據(jù)發(fā)送0X01不能接收0x04的。當(dāng)結(jié)束的象征從0x01,它被認(rèn)為是一個(gè)新的框架0x04的接收,然后再開始分析。有時(shí)候,它可以分析故障幀“成功”奇偶檢查,限制在這樣的方案,最終會(huì)導(dǎo)致混亂和下降。</p><p><b> 圖狀態(tài)機(jī)流程圖</b></p><p> 通過深入分析,發(fā)現(xiàn)有一些通訊程序的結(jié)構(gòu)缺陷:發(fā)送緩沖區(qū)和接收緩沖區(qū)的份額同一個(gè)LP
37、C2114的CPU。雖然這種方法可以節(jié)省大量的RAM的單位,多接收器的情況下,會(huì)出現(xiàn)問題。為了改善它,隊(duì)列被用于串行緩沖器,因?yàn)橛凶銐虻腞AM單位LPC2114。發(fā)送緩沖區(qū)和接收緩沖區(qū)分隔。狀態(tài)機(jī)的方法是用來發(fā)送和接收數(shù)據(jù),在這種方式,它可以解決兩個(gè)問題:頻繁通斷中斷處理和解碼錯(cuò)</p><p> 流程圖加入錯(cuò)誤控制措施,如圖4所示。</p><p> 這個(gè)狀態(tài)機(jī)的方法,很好地解決了問
38、題接收果醬。一個(gè)星期后,被測(cè)試,所有接收機(jī)工作正常,無堵塞發(fā)生。</p><p> 另一個(gè)明顯的問題是變電站收到失真的波形。脈沖匹配電阻RS485的兩端,波形得到改善。它顯示在圖5。</p><p> 大量的測(cè)試結(jié)果證明,數(shù)據(jù)從代碼發(fā)射器發(fā)射,可接收和檢測(cè)傳送到監(jiān)控中心率達(dá)到100%,該系統(tǒng)是穩(wěn)定的和有效的。</p><p><b> 五、結(jié)論<
39、;/b></p><p> 無線傳感器網(wǎng)絡(luò)將對(duì)21世紀(jì)的行業(yè)和我們的日常生活有很大的影響。這提出了基于ZigBee的WSN的項(xiàng)目技術(shù),它是在煤礦行業(yè)中使用。WSNs的硬件和軟件設(shè)計(jì)詳細(xì)。系統(tǒng)測(cè)試證明該系統(tǒng)能正常工作可靠。基于ZigBee人員定位系統(tǒng)在煤礦行業(yè)中具有很大的價(jià)值。這是一定會(huì)在煤礦安全生產(chǎn)中發(fā)揮積極作用。</p><p><b> 圖5改進(jìn)的波形</b&
40、gt;</p><p><b> 六、參考文獻(xiàn)</b></p><p> [1]李小偉. 無線傳感器網(wǎng)絡(luò)技術(shù). 北京理工大學(xué)出版社</p><p> [2]張修平. 礦井監(jiān)控系統(tǒng)的研究葫蘆及其實(shí)現(xiàn)[J].工礦自動(dòng).feb.2007.78-79</p><p> [3] I.Akyildiz和E.Stunebeek
41、“地下無線傳感器網(wǎng)絡(luò):研究面臨的挑戰(zhàn)“,特設(shè)網(wǎng)絡(luò)(ELSEVIER)2006年(4). 669-686</p><p> [4] ZigBee聯(lián)盟的ZigBee規(guī)范[Z].版本1.0,http://www.ZigBee.org,2005-06-27</p><p> [5]李濱,田亞平. ZigBee無線傳感器中的應(yīng)用網(wǎng)絡(luò)在工業(yè)領(lǐng)域的研究[J].山西科技大學(xué)。 oct.2008.110
42、-113</p><p> [6]周立功. ARM嵌入式系統(tǒng)基礎(chǔ)教程.北京航空航天大學(xué)出版社</p><p> [7]曲磊,劉晟德,胡賢斌. ZigBee技術(shù)和apllication. 北京航空航天大學(xué)航天大學(xué)出版社</p><p> [8]任秀麗,于海斌. 實(shí)現(xiàn)技術(shù)的研究ZigBee無線通信協(xié)議.計(jì)算機(jī)工程與應(yīng)用. 2007,43(6):143-145&
43、lt;/p><p> 附(外文文獻(xiàn)原文):</p><p> Research of Wireless Sensor Networks based on ZigBee for Miner Position</p><p> Xiuping Zhang, Guangjie Han, Changping Zhu, Yan Dou, Jianfeng Tao</p
44、><p> College of Computer & Information Engineering, Hohai Univ.</p><p> Changzhou, China</p><p> E-mail:zhangxiup@hhuc.edu.cn Zhucp315@126.com</p><p> Abstract—Wi
45、th the rapid development of computer communication and web technology, especially the widely application of wireless sensor and embedded technology, Wireless Sensor Networks (WSNs) have been paid great attention in indus
46、try field and our daily life. WSNs based on ARM7TDMI-S CPU and ZigBee device has merit of rapid and simple in networking, node movable in application, abundant information in acquisition, real time collaboration in commu
47、nication, low power consumption in continuous ope</p><p> Keywords- ZigBee; ARM7TDMI-S; CC2420; WSNs; Miner positionning</p><p> I. INTRODUCTION</p><p> Wireless Sensor Networks
48、(WSNs) is a large scale, wireless, self-organization network. It is integration of computer communication, web technology, embedded MCU and wireless sensor technology which has the ability to sense and communicate [1]. N
49、odes are of low cost, small size. Most of which can spread in the work region, collect data, process data and communicate. Wireless sensor nodes usually work at Radio Frequency (RF) band. Nodes constitute a tiered archit
50、ecture networks on site data monito</p><p> II. SCHEME SELECTION</p><p> Main technical specification requirements of miner position monitoring system are summarized as follows:(1) Position pr
51、ecision is 10 meters. Coal mine roadway is narrow, crooked and complicated, so safety monitoring system needs to capture more of the</p><p> monitoring points, (2) Low data rate. The amount of data to be tr
52、ansmitted is small, however high reliability of data transmission is required, (3) Low power consumption. Relatively large power supply is not allowed underground in fact, (4) Low cost of the</p><p> monito
53、ring system device is required [3].Comparison of several wireless transport modes is shown in Table 1.ZigBee technology is low protocol complexity, low power consumption, low data rate, low cost, wireless communication t
54、echnology, which adopts IEEE 802.15.4 protocol. It can be embedded in devices, and has the function of geography position. It works at the data rate of 250 kbps. The range of each node is normally between 10~100m. The ra
55、nge can be up to 1~3km by increasing the RF emission p</p><p> TABLE I. COMPARISION OF WIRELESS TRANSPORT MODES</p><p> Considered the above factors, WSNs with ZigBee technology can suit the l
56、ong-term coal miner position monitoring at low cost, low data rate, low power consumption, high reliability, so this scheme is adopted in coalminer position system. During the process of design, the network structure is
57、determined first, then device is selected and related circuit is designed for networking, including wireless receiver module applying Mega128 and CC2420, substation module applying LPC2114, etc.</p><p> Com
58、munication protocols and related software have been designed and debugged finally.</p><p> III. WIRELESS SENSOR NETWORKS DESIGN</p><p> System function: (1) Achieving underground miner positio
59、ning, having their location improve efficiency of rescue at the time of accident, (2) Managing the time and frequency that miner come into or go out of coalmine, getting miner’s dynamic position information, so as to im
60、prove management performance, (3) Tracing back historical data, statistics and analysis for decision-making.</p><p> A. WSNs structure and hardware device design </p><p> Mixed topology is imp
61、lemented in our design. At present relatively large power supply is not allowed in ine. Star topology network is relatively easy to control and synchronize with low power consume, therefore it is applied in the first lay
62、er. Bus topology is applied in the second layer, because data waveform transmitted has less distortion in this way. The ZigBee wireless sensor network designed for coal miner positioning has four sections:</p><
63、;p> 1) Monitoring and managing software platform (master node): taking charge of collecting personnel position information from network, tracing back data, statistics and analysis, and displaying results in theform o
64、f graphic.</p><p> 2) Monitoring substations: which are full function device nodes, responsible for receiving information of mobile nodes from wireless receiver and outputting data to the master node for pr
65、ocessing.</p><p> 3) Wireless receivers (wireless sensor nodes): which are responsible for detecting information from miners’ within the working area and sending it to substation in accordance with communic
66、ation protocols.</p><p> 4) Wireless code emitter: which are reduced function device nodes, which can be easily fixed in miner’s lamp box, helmet, belt, or pocket. Code emitter sends out radio frequency sig
67、nals which carry miners’identity information. When miner in mobile is in theworking area of wireless receiver, his information will be received by receiver and be transferred up to substation [5].</p><p> S
68、ystem structure is shown in Figure 1.</p><p> Fig.1 System Structure</p><p> Personnel positioning system on the ground is composed of monitoring host computer, backup computer, switch, server
69、, communication interface, arrester and other peripheral devices. Monitoring center stores and analyzes data by corresponding PC and database system, then can obtain each miner’s position information at any time. Personn
70、el positioning system underground is wireless sensor network, it is composed of substation, wireless receiver, code emitter, mine explosion-proof and intrinsically s</p><p> B. Substation design</p>
71、<p> Mine substation is the first level sub-node. Each substation is designed to load six wireless receivers. It sends periodic detection instructions to receivers to determine which wireless receiver’s information
72、 is to be received at one time, then receives miner’s identity information from the wireless receiver. Substation processes the received data for storing and displaying. It will wait for command from host computer and se
73、ndits data to monitoring center on the ground through field bus. Usuall</p><p> In this scheme LPC2114 CPU is selected for substation design [6]. The LPC2114 is based on a 16/32-bit ARM7TDMI-S CPU with real
74、-time emulation and embedded trace support, with their compact 64-pin package, low power consumption, various 32-bit timers, 4-channel 10-bit ADC, PWM channels and 46 fast GPIO lines with up to nine external interrupt pi
75、ns. Multiple serial interfaces including two UARTs</p><p> (16C550), fast I2C and two SPI. With a wide range of serial communication interfaces, which are very suitable for receive data.</p><p>
76、; C. Wireless receiver design</p><p> When miner with wireless code emitter in mobile pass through a wireless receiver, the code emitter would deliver miner’s information of ID number to the wireless recei
77、ver, then it begin to analyze the information. When detection instruction arrives, it willsend data to substation in accordance with the established protocol. ATmega128 chip of Atmel Corporation is used for the microcont
78、roller unit, and smart RF CC2420 chip of Chipcon Corporation with ZigBee function is used as the wireless transce</p><p> ATmega128 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC s
79、tructure. CC2420 is a true single-chip 2.4GHz IEEE 802.15.4 compliant RF transceiver designed for lowpower and low –voltage wireless applications. It includes a digital direct sequence spread spectrum providing an effect
80、ive data rate of 250kbps. It is suitable for both full function device (FFD) and reduced function device (RFD) in wireless sensor network [7]. The configuration interface andtransmit/receive FIFOs</p><p> F
81、ig.2 CC2420 to MCU Interface</p><p> D. Power Supply design</p><p> Explosion proof and intrinsically safe power supply is commonly used in dangerous environment with gas and coal dust. It use
82、s double protection measures for</p><p> over-voltage and over-current, three 18DC voltage output, 500~1000mA current output. It can supply power for 1 substation and 6 receivers at the same time, with comp
83、act size and light weight.</p><p> E. Wireless code emitter</p><p> Mine code emitter transmits independent identification digital code at intervals (every 3 seconds). The code is used to iden
84、tify personnel information. Code emitter is composed of high-frequency transmitter (modulator), microcontroller, batteries and antenna, It makes use of ZigBee technology, 2.4GHz transmit frequency, FSK modulation, transm
85、ission power less than 0 dBm, supply voltage 2.0~3.4V. It has</p><p> two types of state: work and sleep. Work current is less than 1mA, and sleep current is less than 10_A, so as to reduce its power consum
86、ption. With mini package it can be fixed in miner’s lamp box, helmet, belt, or pocket. If it is used for vehicles, it should be fixed on non-metallic parts, more safety place and as high aspossible.</p><p>
87、 IV. COMMUNICATION SOFTWARE DESIGN FOR</p><p> SUBSTATION AND WIRELESS RECEIVER</p><p> A. Time tuning</p><p> Real time collaboration in communication between nodes is required,
88、 so time synchronization is needed. Time tuning process: when system is started, substations will receive the instruction of tuning time. Then send it to NO.1 receiver. After it receives acknowledge from NO.1, then send
89、it to No.2 receiver, and so on, until the last one. If there is no acknowledge from one receiver, substation will wait for a period of time, then go on to the next. If one receiver continues with no acknowledge fo</p&
90、gt;<p> After tuning time, substation detects receivers in turn and collects minersidentification information. Themeanwhile substation transmits acknowledge to corresponding receiver. Only after acknowledge from
91、the receiver is received successfully, substation can confirm whether the data block is effective.</p><p> B. Communication software design</p><p> Communication software design should take th
92、e following three factors into account.</p><p> 1) Wireless receiver receives radio signal from code emitter, and analyzes it into digital signal. Micro Control Unit (MCU) in the Receiver has 4 wire SPI int
93、erface, LPC2114 CPU has 2 wire SPI interfaces, so data is transmitted to substation through SPI bus in the form of external interrupt.</p><p> 2) Sending digital signal to display circuit. LPC2114 device su
94、pports I2C bus transmission, so data can be transmitted to display drive circuit</p><p> through I2C bus.</p><p> 3) Packing data. If monitoring center sends out instruction of periodic detect
95、ion, it is transmitted to substations. Real time coordinate is required by the whole system, so data is required to be transmitted in real time. Considering code emitter transmits data one time every 3 seconds, data is p
96、ackaged every 8 seconds according to agreement during timer interrupt, so that the received data can be transmitted to substation</p><p> CPU in time. Based on analysis above, there are 4 interrupts in sens
97、or node software.</p><p> 1) External interrupt for data transmission.</p><p> 2) I2C interrupt for data display.</p><p> 3) Timer interrupt for package.</p><p> 4)
98、 UART interrupt for receiving periodic detection instruction.</p><p> Data block received by substation CPU need to have time data, so the time in substation and receiver should be the same. Time data comes
99、 from monitoring</p><p> center passed by LPC2114 CPU to Mega128 MCU.</p><p> C. Data packaging protocol</p><p> Data packaging protocols [8] between substation and receiver are
100、designed in two aspects.</p><p> 1) Substation sends out instructions as follows.</p><p> a) Tuning time instruction. Frame structure: frame head (5 FF) + receiver No.(1 byte) + instruction No
101、.(23) + year(1 byte) + month(1 byte) + day(1 byte) + time(1 byte) + minute(1 byte) + second(1 byte) + check(2 byte).</p><p> b) Periodic detection instruction. Frame structure:</p><p> frame h
102、ead (5 FF) + receiver No.(1 byte) + instruction No.(20) + check(2 byte).</p><p> c) Information confirm instruction. Frame structure : frame head (5 FF) + receiver No.(1 byte) + instruction No.(21) + check(
103、2 byte).</p><p> 2) Receiver sends back instructions as follows.</p><p> a) Recognition of tuning time instruction. Frame structure: frame head (5 FF) + receiver No.(1 byte) + instruction No.(
104、23) + check(2 byte).</p><p> b) Recognition of periodic detection instruction. frame structure : frame head(5 FF) + receiver No.(1byte) + instruction No.(20) + day(1 byte) + time(1 byte) + minute(1 byte) +
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業(yè)論文外文翻譯-基于zigbee無線傳感器網(wǎng)絡(luò)的礦工的位置探測(cè)研究
- [雙語翻譯]無線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)
- [雙語翻譯]無線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)(英文)
- [雙語翻譯]無線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)中英全
- 2009年無線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)
- 2009年無線傳感器網(wǎng)絡(luò)外文翻譯--基于Zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng).DOCX
- 2009年無線傳感器網(wǎng)絡(luò)外文翻譯--基于Zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)(英文).PDF
- 基于ZigBee無線傳感器網(wǎng)絡(luò)的研究.pdf
- 基于Zigbee無線傳感器網(wǎng)絡(luò)定位的研究.pdf
- 基于ZigBee技術(shù)無線傳感器網(wǎng)絡(luò)的研究.pdf
- 基于ZigBee的無線傳感器網(wǎng)絡(luò)的研究.pdf
- zigbee相關(guān)外文翻譯---無線技術(shù),低功耗傳感器網(wǎng)絡(luò)
- 基于Zigbee的無線測(cè)溫傳感器網(wǎng)絡(luò).pdf
- ZigBee無線傳感器網(wǎng)絡(luò)研究.pdf
- 基于ZigBee協(xié)議的無線傳感器網(wǎng)絡(luò)研究.pdf
- 基于Zigbee的無線傳感器網(wǎng)絡(luò)定位研究.pdf
- 基于ZigBee技術(shù)的無線傳感器網(wǎng)絡(luò)研究.pdf
- [雙語翻譯]--外文翻譯--在放牧領(lǐng)域基于zigbee的牛監(jiān)測(cè)的無線傳感器網(wǎng)絡(luò)定位
- 基于ZigBee技術(shù)的無線傳感器網(wǎng)絡(luò)設(shè)計(jì)研究.pdf
- 基于ZigBee的無線傳感器網(wǎng)絡(luò)定位方法研究.pdf
評(píng)論
0/150
提交評(píng)論