外文翻譯--控制移動(dòng)液壓起重機(jī)_第1頁(yè)
已閱讀1頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  翻譯部分</b></p><p><b>  英文原文</b></p><p>  CONTROL OF MOBILE</p><p>  HYDRAULIC CRANES</p><p><b>  Marc E.</b></p>

2、<p><b>  MÜNZER</b></p><p>  Aalborg University</p><p>  Institute of Energy Technology,</p><p>  Pontoppidanstræde 101</p><p>  DK-9220 Aalb

3、org, Denmark</p><p>  The goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. The thesis is split into five parts: a requirements analysis, an analysis of the cur

4、rent systems and their problems, an analysis of different possibilities for system topologies, development of a new control system for the near future based on electro-hydraulic separate meter in / separate meter out val

5、ves, and finally an analysis of more advanced and complex solutions which can be applied in the</p><p>  Key words: Mobile Hydraulic Cranes, Control Strategies, Separate Meter-in/Separate Meter-out.</p>

6、;<p>  1 INTRODUCTION</p><p>  The goal of the thesis described in this paper is to improve the control of mobile hydraulic cranes. A mobile hydraulic crane can be thought of as a large flexible mech

7、anical structure which is moved by some sort of control system. The control system takes its input from a human operator and translates this command into the motion of actuators which move the mechanical structure. </

8、p><p>  The definition of this control system is purposely left vague in order not to impose any con-straints on its design. The control system consists of actuators which move the mechanical structure, a means

9、 of controlling the actuators, a means of supplying power to the actuators,and a way of accepting inputs from the operator. It is this control system which is the target of this thesis. The goal is to analyze the require

10、ments made on the control system and present guidelines for the design of new </p><p>  The thesis will be split into five parts:</p><p>  1.Analysis of the requirements of the control system, f

11、rom the perspective of the opera-tor, the mechanical system, efficiency, stability, and safety requirements.</p><p>  2.Analysis of current control systems and what their problems are.</p><p>  

12、3.Analysis of the different options for the control system: different types of actuators,different types of control strategies, and different ways of organizing components.</p><p>  4.Presentation of a new t

13、ype of control system, which is commercially implementable. A system that will meet the needs of industry in the near future.</p><p>  5.Analysis of more optimized systems, with higher performance, better ef

14、ficiency, more flexible control, etc. This will be less commercially applicable but will be a starting point for more research.</p><p>  2 SECTIONS OF THE THESIS</p><p>  2.1Requirements Analys

15、is of the Control System Before starting detailed work on developing new control systems, it is important to analyze what the exact demands are on the control system. The control system is influenced by many factors. For

16、 example: the mechanical structure it is controlling, the human operator, effi- ciency, stability, and industry regulations.</p><p>  Industry regulations are the first requirements that have to be addressed

17、. Things like hose rupture protection and runaway load protection make a lot of demands on the control system.After regulations, stability is the next most important requirement; without stability the con-trol system can

18、’t be used. Once stability has been assured, the performance requirements of the control system have to be set. They are determined by the mechanical structure of the crane and the human operator. The mechan</p>&

19、lt;p>  2.2Analysis of Current Control Systems</p><p>  Before designing a new control system it is good to analyze the current control systems to find out what their problems are. Current control systems

20、are mainly hydraulic and can suffer from three main problems:</p><p>  1.Instability</p><p>  2.High cost</p><p>  3.Inefficiency</p><p>  2.2.1Instability</p>&

21、lt;p>  Instability is a serious problem as it can cause injury to human operators or damage to equip-ment. When a system becomes unstable it usually starts to oscillate violently. To avoid insta-bility in current sys

22、tems, the designers either sacrifice certain functions which are desirable,or add complexity and cost. For example, in the crane shown in Figure 1, it would be desir-able to have control over the speed. But due to the sa

23、fety system that cranes are required to have, standard speed control i</p><p>  The parameters of a hydraulic system, such as temperature or load force, also affect stability.A system that is stable with one

24、 set of parameters might be unstable with another set. To ensure stability over the entire operating range of the system, performance must sometimes be sacrificed at one end of the parameter range.</p><p> 

25、 2.2.2High cost</p><p>  Current systems are purely hydraulic-mechanical, so if the user wants a certain function, the user buys a certain hydraulic-mechanical component. Because most users have different r

26、equirements, there are many different variations of the same basic component. This means that many specialized components must be manufactured rather than one standard product.This drives up the cost of components.</

27、p><p>  2.2.3Inefficiency</p><p>  One form of inefficiency in current systems is due to the link between the flows of the two ports of the cylinder. This is because most valves use a single spool

28、to control the flow in both ports. Because of this link, it is impossible to set the pressure levels in the two sides of the cylinder independently. Therefore, the outlet side will develop a back pressure which acts in o

29、pposition to the direction of travel, which increases the pressure required on the inlet side to maintain motion. Sinc</p><p>  2.3Different Options for Control Systems</p><p>  Current control

30、systems use hydraulic actuators with directional/proportional valves to control the movement. However there are many different options for controlling a cylinder. Options range from new high performance electro-hydraulic

31、 valves, to separate meter in / separate meter out (SMISMO) valves, to hydraulic bus systems, to intelligent actuators with built in power supplies, to pump based control strategies. These systems all have advantages and

32、 dis-advantages which need to be analyzed if</p><p>  2.4 Near Future Solution</p><p>  It is expected that even if it is proven that a completely new system topology is the optimum configuratio

33、n, the crane manufacturers and component manufacturers will not accept the new technology overnight. This will most likely take time, so an interim solution will be devel-oped.</p><p>  This solution will be

34、 made up of micro computer controlled Separate Meter In / Separate Meter Out (SMISMO) valves (Elfving,Palmberg 1997;Jansson,Palmberg, 1990; </p><p>  Mattila,Virvalo 1997). SMISMO valves will make it possibl

35、e to implement new control strategies which are more efficient and stable. The micro computer will make it possible to introduce flexibility to valves. Variants can be programmed in software. This eliminates the need to

36、manufacture hundreds of different variants. The crane manufacturer will be able to choose the exact functions he wants in his valve, while the component manufacturer will have to manu-facture only one valve. This will lo

37、wer</p><p>  2.5 Analysis of Higher Performance Solutions</p><p>  This analysis will depend on the results of the analysis of different topologies. If it is shown that pump based control is to

38、be the way of the future for example, then analysis will be per-formed in this area. Another area which will also be explored, is tool position control.</p><p>  3 LABORATORY FACILITIES</p><p>

39、  As the focus of this thesis is on developing control strategies that can be implemented on commercial machinery, much emphasis will be placed on experimental results. Experimental results will be obtained from two sys

40、tems. The first, a simple one degree of freedom crane,was designed as an experimental platform. The second is a real crane which was donated to the University by Højbjerg Maskinfabrik (HMF) a Danish crane manufactu

41、rer. Refer to Figure 1.</p><p>  Figure 1 Experimental Systems in Laboratory. </p><p>  Left: One DOF crane model. Right: Real Mobile Hydraulic Crane</p><p>  As there are currently

42、 no commercially available separate meter-in/separate meter-out valves,two separate valves will be used instead. A sample circuit of one cylinder is shown in Figure</p><p>  2. The control algorithms which c

43、ontrol the valves, will be programmed on a Digital Signal Processor (DSP)/Pentium dual processor system. The DSP will run the control code and the Pentium will do diagnostics and provide a graphical user interface.</p

44、><p>  Figure 2 Separate Meter In / Separate Meter Out Setup</p><p>  4 CURRENT WORK</p><p>  4.1 Flow Control by Direct Actuation of the Spool</p><p>  Most flow control

45、 valves on the market today work with a pressure compensator (Andersen;Ayres 1997). The pressure compensator keeps a constant pressure drop across the main spool of the valve, which keeps the flow constant. However, the

46、addition of a pressure compensator makes the valve more complicated than a simple single spool valve. Another way of doing flow control is to measure the pressure drop across the valve and adjust the spool position to ac

47、count for this (Backé; Feigel 1990). This i</p><p>  The concept is very simple, spool position is calculated from the Bernoulli equation using the pressure drop across the spool and a reference flow.&l

48、t;/p><p>  Even though this is a simple equation, it is not easy to implement. The accuracy of the flow control is dependent on the precision of the position sensors and of the pressure transducers.Noise on the

49、 pressure or the position signals can cause stability problems. Filtering the noise,introduces delays in the control which can also affect stability. In addition the Bernoulli equation is not followed exactly over the en

50、tire operating range of the valve, so it may be nec-essary to store the valve cha</p><p>  4.2 Cylinder Control Strategy</p><p>  To control a hydraulic cylinder, the strategy has to be able to

51、handle four different situations depending on the directions of the load and the velocity of the cylinder. Refer to Figure 3 The control strategies that have appeared in the literature are usually quite complex and depe

52、nd on measurements of the cylinder position and velocity (Elfving,Palmberg 1997;Mattila;Virvalo 1997). They are also based on rather complex control algorithms. It is the goal of this thesis to start with a control s<

53、/p><p>  Figure 3 Different Situations in Crane Operation</p><p>  Another feature which needs to be acknowledged when designing a control strategy, is thetype of valve used. Mobile hydraulic valve

54、s demand low leakage and since most mobilevalves are spool valves, they usually have large overlaps. In addition, to make the cost of thevalve acceptable to industry, the actuation stage on the spool is usually quite slo

55、w. This com-bination of large overlap and slow actuation makes it hard to implement many of the strate-gies that have been presented. Pressure control</p><p>  One example of a new strategy which is simple a

56、nd robust is described as follows. Flow con-trol is implemented on the inlet side and pressure control is implemented on the outlet side.The flow control is based on the Bernoulli equation. Pressure control is done by a

57、PI control-ler which maintains a low constant pressure to increase the efficiency and prevent cavitation.To work around large overlaps and slow actuation stage, the pressure controller only does meter out control. This m

58、eans that if </p><p>  At the time of writing this paper the initial experimental tests had been performed on the real crane shown in Figure 1 . Stability was not achieved because the crane is equipped with

59、a load holding valve. However, the load holding valve will be replaced with a pilot operated check valve, which should make it possible to stabilize the system. In current systems, the load holding valve serves two funct

60、ions, load holding and runaway load protection. Due to the use of a SMISMO valve setup, the runa</p><p>  Figure 4 Controller Strategy for Lowering of Load</p><p>  5 CONCLUSION</p><

61、p>  Even though not much experimental work has been finished, a good start has been made and initial tests have been promising. The outline of the thesis has been developed and organized in a logical manner. The work

62、is split into five parts, requirements analysis, analysis of cur-rent systems, analysis of different topologies, development of a near future solution, and development of a more optimum solution. At the end of the thesis

63、, the control of mobile hydraulic cranes will have been improved.</p><p>  6 ACKNOWLEDGEMENTS</p><p>  This project is being funded in part by Danfoss Fluid Power A/S. The author would also lik

64、e to thank Højbjerg Maskinfabrik (HMF) A/S for the donation of the test crane.</p><p>  7 REFERENCES</p><p>  Andersen, B. R.; Ayres, J. L. (1997). Load Sensing Directional Valves, Current

65、 Technology and Future Development, The Fifth Scandinavian International Conference on Fluid Power</p><p>  Backé, W.; Feigel, H. (1990). Neue Möglichkeiten Beim Elektrohydraulischen Load-Sens-ing,

66、 O+P Ölhydraulik und Pneumatik 34</p><p>  Elfving, M.; Palmberg, J. O. (1997). Distributed Control of Fluid Power Actuators -</p><p>  Experimental Verification of a Decoupled Chamber Pres

67、sure Controlled Cylinder, 4th Inter-national Conference on Fluid Power</p><p>  Jansson, A.; Palmberg, J. O. (1990). Separate Controls of Meter-in and Meter-Out Orifices in Mobile Hydraulic Systems, Internat

68、ional Off-Highway and Powerplant Congress and Exposition</p><p>  Mattila, J.;Virvalo, T. (1997). Computed Force Control of Hydraulic Manipulators, 5th Scandinavian International Conference On Fluid Power&l

69、t;/p><p><b>  中文譯文</b></p><p><b>  控制移動(dòng)液壓起重機(jī)</b></p><p>  Marc E. MÜNZER</p><p><b>  奧爾堡大學(xué)</b></p><p><b>  能源技術(shù)

70、研究所</b></p><p>  Pontoppidanstræde 101</p><p>  丹麥奧爾堡DK-9220</p><p>  Email: mmun@iet.auc.dk</p><p>  在這篇論文中論題描述的目的是改進(jìn)控制移動(dòng)液壓起重機(jī)。論文分為五部分:需求分析;分析當(dāng)前系統(tǒng)和他們的問(wèn)題;為系統(tǒng)

71、的拓?fù)浣Y(jié)構(gòu)分析不同的可能性;基于對(duì)電液伺服單獨(dú)的輸入儀表/單獨(dú)的輸出儀表的閥門(mén), 為不久的將來(lái)發(fā)展一個(gè)新的控制系統(tǒng);最后分析更先進(jìn)和復(fù)雜的解決辦法這可以應(yīng)用在更遙遠(yuǎn)的將來(lái)。論文工作將被用在工業(yè)協(xié)作中,因此論文將比純粹對(duì)論文焦點(diǎn)有更多對(duì)工業(yè)焦點(diǎn)。</p><p>  關(guān)鍵詞:移動(dòng)液壓起重機(jī);控制策略;單獨(dú)的輸入輸出儀表; </p><p><b>  1導(dǎo) 言</b>

72、</p><p>  在這篇論文中論題描述的目的是改進(jìn)控制移動(dòng)液壓起重機(jī)。移動(dòng)液壓起重機(jī)可認(rèn)為是作為一個(gè)大型靈活的機(jī)械結(jié)構(gòu),這種機(jī)械結(jié)構(gòu)被提出某種形式的控制系統(tǒng)。這種控制系統(tǒng)由人類(lèi)工作者輸入并且轉(zhuǎn)換命令成為移動(dòng)機(jī)械機(jī)構(gòu)傳動(dòng)裝置的動(dòng)作。</p><p>  控制系統(tǒng)的定義是故意留下模糊,目的是不加任何約束在它的設(shè)計(jì)上。該控制系統(tǒng)作動(dòng)是移動(dòng)的機(jī)械結(jié)構(gòu),一種控制傳動(dòng)裝置的方法,一種給傳動(dòng)裝置供電

73、的方法,和接受操作者的輸入的方法。這就是控制系統(tǒng),這篇論文的對(duì)象。目標(biāo)是要分析作出關(guān)于控制系統(tǒng)和現(xiàn)有的指導(dǎo)方針的要求,以供設(shè)計(jì)新的控制系統(tǒng)。</p><p>  論文將分成五個(gè)部分:</p><p>  1.對(duì)控制系統(tǒng)要求的分析,從操作者的觀點(diǎn),機(jī)械系統(tǒng),功率,穩(wěn)定性和安全要求這些方面。</p><p>  2.分析目前的控制系統(tǒng)和他們的問(wèn)題</p>

74、<p>  3.為控制系統(tǒng)分析不同的選項(xiàng):不同類(lèi)型的傳動(dòng)裝置,不同類(lèi)型的控制策略和不同方式的組織構(gòu)成。</p><p>  4.介紹來(lái)一種新型的商業(yè)可行的控制系統(tǒng)。系統(tǒng)可以滿(mǎn)足未來(lái)的工業(yè)要求。</p><p>  5.分析更多的優(yōu)化系統(tǒng),如更高的性能,提高效率,更靈活的控制等。這將會(huì)減少商業(yè)適用但是將是更多研究的一個(gè)起點(diǎn)。</p><p><b>

75、;  2 論文部分</b></p><p>  2.1控制系統(tǒng)的需求分析</p><p>  對(duì)分析控制系統(tǒng)的嚴(yán)格要求來(lái)說(shuō).發(fā)展新的控制系統(tǒng)開(kāi)始之前的詳細(xì)工作是重要的??刂葡到y(tǒng)有很多的影響因素。例如:控制系統(tǒng)的機(jī)械結(jié)構(gòu),人類(lèi)的因素,功率,穩(wěn)定性和行業(yè)規(guī)則。</p><p>  行業(yè)法規(guī)是第一要求,必須加以解決。像對(duì)破裂軟管的保護(hù)和運(yùn)轉(zhuǎn)負(fù)荷的保護(hù)采取的措施

76、是控制系統(tǒng)的許多要求。規(guī)則之后,穩(wěn)定性是下一個(gè)最重要的要求。沒(méi)有穩(wěn)定性,不能使用控制系統(tǒng)。穩(wěn)定性的確認(rèn),樹(shù)立了控制系統(tǒng)的執(zhí)行要求。起重機(jī)的機(jī)械結(jié)構(gòu)和人類(lèi)操作者決定了它們。移動(dòng)液壓起重機(jī)的結(jié)構(gòu)是一個(gè)有非常低的固有頻率的大型的靈活結(jié)構(gòu)。為了預(yù)防震動(dòng),它必須保持控制系統(tǒng)的速度在正常的頻率或者去發(fā)展能增加這個(gè)頻率的控制系統(tǒng)。人類(lèi)工作者也施加影響控制系統(tǒng)的限制。如果控制系統(tǒng)是太慢或者太快,那么人類(lèi)操作者不可能對(duì)它合適的輸入。最后,一旦規(guī)則被滿(mǎn)足,

77、穩(wěn)定性被確定,性能達(dá)到正確的水平,控制系統(tǒng)的功率功效達(dá)到最優(yōu)化。</p><p>  2.2當(dāng)前控制系統(tǒng)的分析</p><p>  在新的控制系統(tǒng)設(shè)計(jì)之前最好分析當(dāng)前的控制系統(tǒng)來(lái)發(fā)現(xiàn)它們的問(wèn)題。</p><p>  目前控制系統(tǒng)主要是水壓和遭受的三個(gè)主要的問(wèn)題:</p><p><b>  1.不穩(wěn)定性</b></

78、p><p><b>  2.高成本</b></p><p><b>  3.無(wú)效率</b></p><p><b>  2.2.1不穩(wěn)定性</b></p><p>  不穩(wěn)定是一個(gè)嚴(yán)重的問(wèn)題,因?yàn)樗梢栽斐蓚θ祟?lèi)的操作者或損壞的設(shè)備。當(dāng)一個(gè)系統(tǒng)變得不穩(wěn)定,這通常開(kāi)始激烈的振蕩。為

79、了避免目前系統(tǒng)中的不穩(wěn)定性,設(shè)計(jì)者采取犧牲某些功能,或者增加復(fù)雜性和成本是可取的。例如,圖1中展示的起重機(jī),它通過(guò)控制速度是可取的。但是由于起重機(jī)安全系統(tǒng)的要求,標(biāo)準(zhǔn)速度的控制是不穩(wěn)定的。控制速度的增加要求更負(fù)責(zé)或者更多昂貴的機(jī)械系統(tǒng)。</p><p>  水壓系統(tǒng)的參數(shù),例如溫度和荷載力量,也影響穩(wěn)定性。一個(gè)系統(tǒng)調(diào)整參數(shù)的穩(wěn)定可能對(duì)另一個(gè)參數(shù)不穩(wěn)定。為了確保完整系統(tǒng)范圍對(duì)穩(wěn)定性,性能可能在某個(gè)參數(shù)范圍的目標(biāo)中犧

80、牲掉。</p><p><b>  2.2.2高成本</b></p><p>  目前系統(tǒng)是純粹的液壓機(jī)械,所以使用者想要某一功能,那么使用者要買(mǎi)一個(gè)液壓機(jī)械組件。因?yàn)榇蠖鄶?shù)的用戶(hù)有不同的要求,相同的基本組成就有許多不同的版本。這意味著,許多專(zhuān)門(mén)組成部分必須制造出不是一個(gè)標(biāo)準(zhǔn)的產(chǎn)品。這使構(gòu)成的成本上升。</p><p><b>  2

81、.2.3無(wú)效率</b></p><p>  由于在氣缸兩個(gè)端口之間的連接物流動(dòng),在目前系統(tǒng)中存在一種低效率形式。這是因?yàn)榇蠖鄶?shù)閥門(mén)使用一個(gè)單一的后臺(tái)控制流在兩個(gè)端口。因?yàn)檫@個(gè)環(huán)節(jié),這是不可能設(shè)置的壓力水平在氣缸獨(dú)立的兩邊。因此,出口方將制定一個(gè)回壓力的行為,在反方向行進(jìn),從而增加維持運(yùn)動(dòng)進(jìn)口邊的要求壓力。由制動(dòng)裝置產(chǎn)生的力量是與兩邊之間不同的壓力成比例,氣缸的實(shí)際壓力是不影響氣缸的動(dòng)作。例如,氣缸的動(dòng)

82、作壓力是0psi/600 psi ,與1000psi/1600psi是相同的。然而,在第二種情況下,電力供應(yīng)將不得不供應(yīng)更多的電力。這額外的電力是浪費(fèi)。</p><p>  2.3不同選擇的控制系統(tǒng)</p><p>  目前的控制系統(tǒng)使用的液壓致動(dòng)器與定向/比例閥控制運(yùn)動(dòng)。不過(guò)有很多不同的選項(xiàng)控制氣缸。</p><p>  選擇范圍從新型高性能電-液壓閥,來(lái)單獨(dú)的輸

83、入儀表/單獨(dú)的輸出儀表(SMISMO)的閥門(mén),液壓總線(xiàn)系統(tǒng),智能驅(qū)動(dòng)器內(nèi)置在電源供應(yīng)器,泵基于控制策略。這些系統(tǒng)都有優(yōu)點(diǎn)和缺點(diǎn),需要加以分析,如果最優(yōu)化的解決辦法是選擇。</p><p>  2.4不久的將來(lái)解決方案</p><p>  可以預(yù)料,即使是證明,一個(gè)完全新系統(tǒng)的拓?fù)浣Y(jié)構(gòu)是最優(yōu)配置中,起重機(jī)的制造商和部件制造商將不會(huì)接受持續(xù)一夜的新科技。這將最有可能需要一定的時(shí)間,使一個(gè)臨時(shí)解

84、決辦法,將得到開(kāi)發(fā)。</p><p>  這個(gè)解決方案將由微型電腦控制的單獨(dú)的輸入儀表/單獨(dú)的輸出儀表(SMISMO)的閥門(mén)(Elfving, Palmberg 1997; Jansson, Palmberg, 1990; Mattila,Virvalo 1997)SMISMO閥門(mén),將使得有可能實(shí)施新的控制策略是更有效率和更穩(wěn)定。該微型電腦將使得有可能引入的靈活性閥門(mén)。變值可以編程軟件。這消除了需要制造數(shù)百種不同

85、的變值。起重機(jī)制造商將能夠選擇的確切功能,他希望在他的閥門(mén),而組件制造商將不得不生產(chǎn)上只有一個(gè)閥門(mén)。這將降低成本,即使性能將有所增加。</p><p>  2.5分析了更高的性能的解決方案</p><p>  這項(xiàng)分析將取決于有關(guān)的分析結(jié)果不同的拓?fù)浣Y(jié)構(gòu)。如果證明即泵基于控制是要方式,未來(lái)舉例來(lái)說(shuō),分析,然后將表現(xiàn)在這方面的工作。另一個(gè)領(lǐng)域也將加以探討,是工具的位置控制。</p>

86、;<p><b>  3 實(shí)驗(yàn)室設(shè)施</b></p><p>  作為重點(diǎn),這一論斷是對(duì)發(fā)展中國(guó)家的控制策略可以實(shí)施對(duì)商業(yè)機(jī)械,許多重點(diǎn)將放在實(shí)驗(yàn)結(jié)果。實(shí)驗(yàn)結(jié)果將所得的兩種制度。第一,一個(gè)簡(jiǎn)單的自由度,起重機(jī),目的是作為一個(gè)實(shí)驗(yàn)平臺(tái)。第二是一個(gè)真正的起重機(jī),其中由HMF一個(gè)丹麥制造商捐獻(xiàn)給了大學(xué)。參考圖1 </p><p>  由于目前并沒(méi)有商業(yè)上可

87、用單獨(dú)的輸入儀表/單獨(dú)的輸出儀表的閥門(mén), 兩個(gè)單獨(dú)的閥門(mén)將被用于代替。一個(gè)氣缸的采樣電路如圖2所示。控制閥的控制算法,將程序是一種數(shù)字信號(hào)處理器( DSP ) /奔騰雙處理器系統(tǒng)。該DSP將運(yùn)行控制代碼和Pentium將做診斷,并提供一個(gè)圖形用戶(hù)界面。</p><p><b>  4 當(dāng)前工作</b></p><p>  4.1軸向直接驅(qū)動(dòng)器的流量控制</p&g

88、t;<p>  流量控制直接驅(qū)動(dòng)軸線(xiàn)最流量控制閥在市場(chǎng)上今天的工作與壓力補(bǔ)償(Andersen;Ayres 1997)。壓力補(bǔ)償器保持恒定的壓力下降,全國(guó)主要閥芯的閥,不斷流不斷。不過(guò),除了一個(gè)壓力補(bǔ)償,使閥復(fù)雜得多,一個(gè)簡(jiǎn)單的單滑閥。另一種方式做流量控制是衡量壓力降全國(guó)閥和調(diào)整閥芯的立場(chǎng),考慮到這一點(diǎn)(Backé; Feigel 1990)。這不是一個(gè)新的構(gòu)思,但一直沒(méi)有得到實(shí)施,因?yàn)樵谏虡I(yè)上的成本高昂,壓力傳

89、感器和微控制器。不過(guò),與目前的下降,成本的微控制器和壓力傳感器這種想法是現(xiàn)在在商業(yè)上可行的。</p><p>  這個(gè)概念非常簡(jiǎn)單,后臺(tái)的立場(chǎng)是計(jì)算從伯努利方程使用壓力降全國(guó)閥芯和參考設(shè)計(jì)流程。</p><p>  即使這是一個(gè)簡(jiǎn)單的方程式,這是不容易落實(shí)。精確的流量控制是依賴(lài)于高精度的位置傳感器和壓力傳感器。噪音對(duì)壓力或立場(chǎng)的信號(hào)可以造成穩(wěn)定性問(wèn)題。過(guò)濾噪音,介紹了延誤,在控制也可以影響

90、穩(wěn)定。此外,該伯努利方程是沒(méi)有遵循正是在整個(gè)。閥門(mén)的全部運(yùn)行范圍,因此它可能是必要的儲(chǔ)存閥的特點(diǎn)作為一個(gè)數(shù)據(jù)表或開(kāi)發(fā)一個(gè)更復(fù)雜的方程。</p><p>  4.2氣缸的控制策略</p><p>  控制液壓缸,這個(gè)策略,以便能夠處理四種不同的情況,依賴(lài)負(fù)荷的趨勢(shì)和氣缸的速度。見(jiàn)圖3</p><p>  控制策略已出現(xiàn)在文獻(xiàn)中通常相當(dāng)復(fù)雜,并取決于測(cè)量氣缸的位置和速度

91、(Elfving, Palmberg 1997;Mattila; Virvalo 1997)他們基于同樣的基礎(chǔ)上,而不是復(fù)雜的控制算法。它的目標(biāo)是這一論斷開(kāi)始與控制策略是基于簡(jiǎn)單的PI控制器和不作任何要求的位置和速度的氣缸。系統(tǒng)的性能將低于一個(gè)復(fù)雜的控制策略,但它可能更容易商業(yè)實(shí)施,因?yàn)樗恍枰厥獾膫鞲衅鞑⑶腋菀妆灰话愕墓こ處熇斫狻?lt;/p><p>  另一個(gè)特點(diǎn),需要予以承認(rèn),在設(shè)計(jì)時(shí)控制策略,是這類(lèi)型閥的

92、使用。移動(dòng)液壓閥的需求,低漏電,并由于大多數(shù)流動(dòng)閥閥芯閥門(mén),他們通常有大的重疊。此外,為了在工業(yè)上接受閥門(mén)的成本,沖動(dòng)進(jìn)程通常是相當(dāng)緩慢。這一組合的大型重疊和緩慢的驅(qū)動(dòng)使得它難以落實(shí)的許多戰(zhàn)略已提交。力量控制變得困難,特別是當(dāng)有一個(gè)重疊和一個(gè)緩慢的制動(dòng)裝置。</p><p>  其中一個(gè)例子是一項(xiàng)新戰(zhàn)略,這是簡(jiǎn)單的和穩(wěn)健的描述如下。流量控制是實(shí)施對(duì)進(jìn)口方和壓力控制是實(shí)施對(duì)出口的一面。流量控制的基礎(chǔ)上,伯努利方程。

93、壓力控制是由PI控制器保持低恒定的壓力,提高工作效率和防止汽蝕。要解決大的重疊和緩慢的驅(qū)動(dòng)階段,壓力控制器不僅是儀表輸出控制。這意味著,如果控制器的意愿,以提高壓力,它不能增加流量,以圓柱,它只能減少輸出端口開(kāi)口。好處,這是唯一的一次,該閥芯已越過(guò)零的位置,當(dāng)操作者要改變氣缸當(dāng)運(yùn)動(dòng)方向。這種情況下,負(fù)載力和速度都在同一方向,這一戰(zhàn)略已經(jīng)被修改。在這種情況下,壓力范圍,壓力控制器,在出口增加的一個(gè)值,其中反對(duì)負(fù)荷的力量。壓力是增加參考當(dāng)它

94、注意到的壓力,進(jìn)氣一邊是呈下降趨勢(shì)。壓力的參考,也是控制的PI控制器。示意圖模型控制器的系統(tǒng)負(fù)載降低的情況如圖4所示</p><p>  寫(xiě)這本書(shū)的初步實(shí)驗(yàn)測(cè)試的同時(shí),起重機(jī)如圖1所示已完成任務(wù)。穩(wěn)定是沒(méi)有達(dá)到,因?yàn)槠鹬貦C(jī)是配備了負(fù)荷控股閥。不過(guò),負(fù)荷控股閥將取代一個(gè)試點(diǎn)運(yùn)作,止回閥,應(yīng)使人們有可能穩(wěn)定系統(tǒng)。在目前的制度下,負(fù)載控股閥服務(wù)兩項(xiàng)職能,負(fù)載控股和失控的負(fù)荷保護(hù)由于使用了smismo閥安裝,離家出走的負(fù)

95、荷保護(hù)是建成的控制策略,因此,唯一的功能是必要的負(fù)荷控股閥的執(zhí)行是負(fù)載舉行。液體單向閥門(mén)將能夠做到這一點(diǎn),沒(méi)有加入復(fù)雜的動(dòng)力學(xué),這顛覆了系統(tǒng)的穩(wěn)定性。</p><p><b>  5 結(jié)論</b></p><p>  即使沒(méi)有太大的試點(diǎn)工作已經(jīng)完成,一個(gè)好的開(kāi)始,已取得初步測(cè)試已大有希望的。綱要的論文已被發(fā)達(dá)國(guó)家和有組織的在一個(gè)合乎邏輯的方式。工作分成五個(gè)部分,需求分

96、析,分析現(xiàn)行制度,分析不同的拓?fù)浣Y(jié)構(gòu),發(fā)展一個(gè)不久的將來(lái)解決辦法,和發(fā)展一個(gè)更優(yōu)化的解決方案。在去年底的論文,控制移動(dòng)液壓起重機(jī)將得到改善。</p><p><b>  6 鳴謝</b></p><p>  這個(gè)項(xiàng)目由丹佛斯流體動(dòng)力A/S提供部分資金。作者也想感謝Højbjerg Maskinfabrik (HMF) A/S捐贈(zèng)測(cè)試起重機(jī)。</p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論