2023年全國(guó)碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩26頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、(1)外文文獻(xiàn)原文RobustAnalysisofFeatureSpaces:ColImageSegmentationAbstractAgeneraltechniqueftherecoveryofsignificantimagefeaturesispresented.Thetechniqueisbasedonthemeanshiftalgithmasimplenonparametricprocedurefestimatingdensit

2、ygradients.Drawbacksofthecurrentmethods(includingrobustclustering)areavoided.Featurespaceofanynaturecanbeprocessedasanexamplecolimagesegmentationisdiscussed.Thesegmentationiscompletelyautonomousonlyitsclassischosenbytheu

3、ser.Thusthesameprogramcanproduceahighqualityedgeimageprovidebyextractingallthesignificantcolsapreprocessfcontentbasedquerysystems.A512512colimageisanalyzedin?lessthan10secondsonastardwkstation.Graylevelimagesarehledascol

4、imageshavingonlythelightnesscodinate.Keywds:robustpatternanalysislowlevelvisioncontentbasedindexing1IntroductionFeaturespaceanalysisisawidelyusedtoolfsolvinglowlevelimageunderstingtasks.Givenanimagefeaturevectsareextract

5、edfromlocalneighbhoodsmappedintothespacespannedbytheircomponents.Significantfeaturesintheimagethencrespondtohighdensityregionsinthisspace.Featurespaceanalysisistheprocedureofrecoveringthecentersofthehighdensityregionsi.e

6、.therepresentationsofthesignificantimagefeatures.HistogrambasedtechniquesHoughtransfmareexamplesoftheapproach.Whenthenumberofdistinctfeaturevectsislargethesizeofthefeaturespaceisreducedbygroupingnearbyvectsintoasinglecel

7、l.Adiscretizedfeaturespaceiscalledanaccumulat.Wheneverthesizeoftheaccumulatcellisnotadequatefthedataseriousartifactscanappear.TheproblemwasextensivelystudiedinthecontextoftheHoughtransfme.g..Thusfsatisfactyresultsafeatur

8、espaceshouldhavecontinuouscodinatesystem.Thecontentofacontinuousfeaturespacecanbemodeledasasamplefromamultivariatemultimodalprobabilitydistribution.Notethatfrealimagesthenumberofmodescanbeverylargeofthederoftens.searchin

9、gftheminimalvolumeellipsoidcontainingatleasthdatapoints.Themultivariatelocationestimateisthecenterofthisellipsoid.Toavoidcombinatialexplosionaprobabilisticsearchisemployed.Letthedimensionofthedatabep.Asmallnumberof(p1)tu

10、pleofpointsareromlychosen.Feach(p1)tuplethemeanvectcovariancematrixarecomputeddefininganellipsoid.TheellipsoidisinatedtoincludehpointstheonehavingtheminimumvolumeprovidestheMVEestimate.BasedonMVEarobustclusteringtechniqu

11、ewithapplicationsincomputervisionwasproposedin.Thedataisanalyzedunderseveralresolutions“byapplyingtheMVEestimatrepeatedlywithhvaluesrepresentingfixedpercentagesofthedatapoints.Thebestclusterthencrespondstothehvalueyieldi

12、ngthehighestdensityinsidetheminimumvolumeellipsoid.Theclusterisremovedfromthefeaturespacethewholeprocedureisrepeatedtillthespaceisnotempty.TherobustnessofMVEshouldensurethateachclusterisassociatedwithonlyonemodeoftheunde

13、rlyingdistribution.Thenumberofsignificantclustersisnotneededaprii.Therobustclusteringmethodwassuccessfullyemployedftheanalysisofalargevarietyoffeaturespacesbutwasfoundtobecomelessreliableoncethenumberofmodesexceededten.T

14、hisismainlyduetothenmalityassumptionembeddedintothemethod.Theellipsoiddefiningaclustercanbealsoviewedasthehighconfidenceregionofamultivariatenmaldistribution.ArbitraryfeaturespacesarenotmixturesofGaussiansconstrainingthe

15、shapeoftheremovedclusterstobeellipticalcanintroduceseriousartifacts.Theeffectoftheseartifactspropagatesasmemeclustersareremoved.Furthermetheestimatedcovariancematricesarenotreliablesincearebasedononlyp1points.Subsequentp

16、ostprocessingbasedonallthepointsdeclaredinlierscannotfullycompensatefaninitialerr.Tobeabletocrectlyrecoveralargenumberofsignificantfeaturestheproblemoffeaturespaceanalysismustbesolvedincontext.Inimageunderstingtaskstheda

17、tatobeanalyzediginatesintheimagedomain.Thatisthefeaturevectssatisfyadditionalspatialconstraints.Whiletheseconstraintsareindeedusedinthecurrenttechniquestheirroleismostlylimitedtocompensatingffeatureallocationerrsmadeduri

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論