版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、LearningMultipleLayersofFeaturesfromTinyImagesAlexKrizhevskyApril82009Contents1Preliminaries31.1Introduction............................................31.2Naturalimages..........................................31.2.1The
2、dataset........................................31.2.2Properties.........................................31.3TheZCAwhiteningtransfmation...............................51.3.1Motivation......................................
3、..51.3.2Whiteninglters.....................................51.3.3Whiteneddata......................................61.4RBMs...............................................61.4.1TrainingRBMs................................
4、......101.4.2DeepBeliefwks(DBNs)..............................111.4.3GaussianBernoulliRBMs................................121.4.3.1TrainingGaussianBernoulliRBMs.....................141.4.3.2Learningvisiblevariances......
5、.....................141.4.3.3Visualizinglters...............................161.4.4Measuringperfmance.................................161.5Feedfwardneuralwks..................................162Learningagenerativemodelo
6、fimages172.1Motivation............................................172.2Previouswk...........................................172.3Initialattempts..........................................172.4Deletingdirectionsofvariance.
7、.................................172.5Trainingonpatchesofimages..................................202.5.1MergingRBMstrainedonpatches...........................202.6TrainingRBMson32x32images................................
8、232.7Learningvisiblestarddeviations..............................262.8Secondlayeroffeatures.....................................263Objectclassicationexperiments323.1Thelabeledsubset.......................................
9、.323.2Methods..............................................334ParallelizingthetrainingofRBMs364.1Introduction............................................364.2Thealgithm...........................................364.3Impl
10、ementation..........................................384.3.1Writerthreads......................................394.3.2Readerthreads......................................394.4Results........................................
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Multiple Intelligences in College English Teaching and Learning.pdf
- The Instability of Meaning and Multiple Versions of Translation——from the Perspective of Deconstruction.pdf
- On Translation of Cultural Images from the Perspective of Relevance Theory and Intertextuality.pdf
- a study of college english mobile learning from the perspective of eco―linguistics
- Enrichment and Reproduction of Images in Translating Poems--from the Perspective of Relevance Theory_22534.pdf
- On English Learning in Transition from Junior to Senior middle school.pdf
- On Representation of the Stylistic Features in the Translation of the ProsE-poeM-from the Perspective of Functional Stylistics_20572.pdf
- 2016版-learning latin the ancient way latin textbooks from the ancient world
- Input of Non--English Majors from the Perspective of Generative Learning Theory.pdf
- Problems Encountered by Traninees of Interpreting and Tentative SolutionS-From the Perspective of Reflective Learning.pdf
- images.rar
- features of academic writing
- images.zip
- images.rar
- images.rar
- images.rar
- cognitive radio communication system based on multiple―input multiple―output (mimo) technology
- steganography techniques for digital images
- multiple intelligences and emotional intelligence
- Behaviors Modeling and Analysis of Big Data from Web Apps Using Machine Learning and Deep Rnn Techniques.pdf
評論
0/150
提交評論