版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、英文原文ShtTermLoadFecastingofIranNationalPowerSystemUsingArtificialNeuralwkGenerationTw.BarzaminiM.B.MenhajSh.KamalvA.TajbakhshAbstract—Thispaperpresentsaneurobasedshttermloadfecasting(STLF)methodfIrannationalpowersystem(IN
2、PS)itsregions.Thisisanimprovedversionoftheonegivenin[1].ThearchitectureoftheproposedwkisathreelayerfeedfwardneuralwkwhoseparametersaretunedbyLevenbergMarquardtBP(LMBP)augmentedbyanEarlyStopping(ES)methodtriedoutfincreasi
3、ngthespeedofconvergence.Insteadofseasonaltraininganinputasamonthindicatisaddedtotheinputvects.TheshttermloadfecastingsimulatdevelopedsofarpresentssatisfactybetterresultsfonehouruptoaweekpredictionofINPSloadsregionofINPSB
4、akhtarRegionElectricCo(BREC).I.INTRODUCTIONLoadfecastinghasalwaysbeentheessentialpartofanefficientpowersystemplanningoperation.Generallytherearetwogroupsoffecastingmodelstraditionalmodels(modelbasedtechniques)moderntechn
5、ique(knownasmodelfreetechniques).Traditionalloadfecastingmodelsaretimeseriesregressionanalysis.Inrecentyearscomputationalintelligencemethodsaremecommonlyusedfloadfecasting[210].Multilayerfeedfwardneuralwksasuniversalappr
6、oximatesareverysuitablefloadfecastingbecausetheyhaveremarkableabilitytoapproximatenonlinearfunctionswithanydesiredaccuracy.ionoftheinputoutputtrainingdatainputvectoftheneuralwkplaysacrucialrole.Essentiallyinourcase(loadf
7、ecastingproblem)theMLPbasedwksaregreatlyaffectedbyionofinputs.DaytypeMonthtypehisticalloaddataweatherinfmation.Howtochoosethehourlyloadinputsfeachweeklygroupplaysanimptantroleinimprovingwksperfmance(sectionII).ThesecondN
8、irooResearchInstitute(NRI)STLF(NSTLFII)programisbasedonathreelayerfeedfwardneuralwkbuildingblock.FthetrainingofthisMLPinsteadofconventionalbackpropagation(BP)methodstheLevenbergMarquardtBP(LMBP)EarlyStopping(ES)methodswa
9、semployedindertoreachtheoptimumwk’sparametersfasteralsoinsteadofseasonaltrainingthemonthinputwasaddedtotheinputvects(sectionIII).SomeexamplesoftheNSTLFIIperfmancearepresentedusingINPSactualloadtemperaturedataoftheyear200
10、0regionofINPSBakhtarregionelectricalCo(BREC)actualloadtemperaturedataoftheyear2002(sectionIV).FuturewkscanaddressthefuzzysystemapplicationfspecialconditionsreshapingfwardMLPathreelayerfeedfwardMLPbuildingblockhasbeenused
11、.Generallyneuralwkswithahiddenlayerhavetheremarkableabilitytoapproximatemostnonlinearfunctionswithadesiredaccuracyifthereareenoughhiddenneurons.TherefethemodelshowninFig.1iscomposedofthreelayerseachlayerhasafeedfwardconn
12、ection.InthismodelinputsfeachweeklygroupareseparatelytrainedbyanMLP.TheinputlayerfhourlyloadfecastofeachweeklygroupSaturdayswkdaysThursdaysFridayshasrespectively13191619neurons(consistingofedloadlags3representatives’feca
13、stedtemperatures1nodetoindicatemonth).Throughadeepinvestigationwefoundthatahiddenlayerwith5neuronswksquitewell.Ofcoursethewkhasoneoutputneuron(Thefecastedload).TovalidatethequalityofthedevelopedMLPwerunitwithyear2000’loa
14、ddataofINPSyear2002’loaddataofBRECindertobeabletojudgethemeritofthemethod.Neuronsinthehiddenoutputlayershavenonlineartransferfunctionknownasthe“tangentsigmoid“(tansig)function:Fig.1.TheMLParchitecturefeachweeklygroupThew
15、eightedinputsreceivedbyatansignodearesummedpassedthroughthisnonlinearfunctiontoproduceanoutput.Thetansigfunctiongeneratesoutputsbetween–11itsinputsshouldbeinthesamerange.AsaresultitisnecessarytolimittheMLPinputstargetout
16、puts.Meanstarddeviationminimum(min)Maximum(max)nmalizationmethodshavebeentestedminmaxMethodhasbeened:Thisnmalizationmethodhasalsotheadvantageofmappingthetargetoutputtothenonsaturatedsectoftansigfunction.Thisprocesshelpsi
17、nimprovingtheaccuracyofboththelearningfecastingmodes.TheMLPscanbetrainedfeachweeklygroupofayeartherelatedweightsbiaseswillbegainedusedffecasting.AuserfriendlyinterfacehasalsobeendesignedfNSTLFIIwhichgivestheuserstheabili
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)家電網(wǎng)
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用(英文)
- 國(guó)家電網(wǎng)公司
- 國(guó)家電網(wǎng)口號(hào)
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.doc
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用.doc
- 2014.12.6國(guó)家電網(wǎng)考試真題(國(guó)家電網(wǎng)考試資料)
- 國(guó)家電網(wǎng)公司關(guān)于
- 邏輯判斷——-『2015年國(guó)家電網(wǎng)考試備考』國(guó)家電網(wǎng)考試
- 國(guó)家電網(wǎng)黨[]號(hào)
- 國(guó)家電網(wǎng)科技項(xiàng)目
- 基于人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè).pdf
- 國(guó)家電網(wǎng)公司ppt
- 電網(wǎng)絡(luò)分析4(國(guó)家電網(wǎng)考試資料)
- 國(guó)家電網(wǎng)拆不拆
- 國(guó)家電網(wǎng)面試問(wèn)題
- 電網(wǎng)絡(luò)分析1(國(guó)家電網(wǎng)考試資料)
評(píng)論
0/150
提交評(píng)論