版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、1450 KSME International Journal, Vol. 17 No. 10, pp. 1450~ 145Z 2003 Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method Gyu Ha Kim*, Kyu Zong Cho Deparonent of Mechanical Engineering, Chonna
2、m National University, 300, Yongbong-dong, Buk-gu, Gwangju 500-757, Korea In Bum Chyun Kia Motors Co., Inc 700, Naebang-dong, Seo-gu, Gwangju 502-711, Korea Gi Seob Choi TOP R FAX : -[-82-62-530 1689 Department of Mech
3、anical Engineering, Chonnam National University. 300, Yongbong-dong. Buk-gu, Gwangju 500-757. Korea. (Manuscript Received De- cember 23. 2002: Revised July 19, 2003) vehicle production. Existing dynamic stress an- aly
4、sis for the analysis of vehicle fatigue mainly calculates the dynamic stress history and fatigue after performing dynamic analysis and stress an- alysis with relevant software applications such as DADS and NASTRAN, and t
5、hen superposi- tioning the dynamic load history and stress in- fluence coefficient at each joint. This approach is a complex process, when the flexibility of the parts is taken into account. It is, however, inca- pable o
6、f giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires the analysts to have an expertise in software applicatio
7、ns of various kinds or an expert in each area to perform the analysis. This requires a great deal of manpower and time. 1452 G.vu Ha Khn, Kyu Zong Cho, In Bum Chyun and Gi Seob Choi bility is [M] ' +S(a, J)+U(al+~g
8、,t-O~=O(lt Here, P and 6) are an acceleration vector and an anglular acceleration vector, respectively, at the flexible body's arbitrary points. And d, a, a are the acceleration vector, the velocity vector and the di
9、splacement vector in regard to flexible body's elastic deformation. In addition, s is a generalized force vector that is dependent on the velocity and U is the internal force vector. ~q is a Jacobian of the restricti
10、on equation, /} is La- grange multiplier vector and Oex is the external force vector. If we ignore the velocity and accel- eration in regard to the flexible body's elastic deformation, we can introduce equation (2) f
11、rom Eq. (1). [M]{/?}+ U(a) ~-(~ff,,l-Qex:O (2) Here, /~ is the rigid body's acceleration vector. The second term is related to the elastic deforma- tion. If we consider the degree of freedom of the finite element mo
12、del, Eq. (2) becomes. U(a) =[h-~{ u }=Q~-[M]{/~ }-~gA (3) Here { u } is a displacement vector, IMP{/~ } is inertia force, and I/)ff, ,} is a joint reaction force is calculated from the dynamic analysis. At a designate
13、d time, this equation could be change a to a static equation, where U(a) is equal to an external force, inertial force, and joint reaction force. Eq. (3), therefore, could be solved by quasi-static finite element analys
14、is in a each stage of dynamic analysis (Kuo and Kelkar, 1995). If we express a general load history as Fe(t), the stress history at a specific point of the body could be introduced as a /brm of linear function which has
15、n load history, as shown in equation (4). a,(t)=f(F~(t)) i=l, ..., ~ (4) When ~ is the unit tbrce vector of load history Fi(l), the equation could be shown as equation (5). F~(t)=C~(t)e~ i=l, ..., n (5) Here, C~(t) i
16、s the magnitude of time varying load. In the quasi-static stress analysis, if a stress field is constant at a specific time, we can say that linear operator f is independent of time. From the superposition principle and
17、quasi-static assump- tion, we can introduce equation (6). ~-~ Point #2 I Point # 1 Fig. 3 Quasi static stress analysis model ,-] “ 1 '4 Ii “4 1 !1 .t W Fig. 4 ~ NDynamic stress history of the point #1 :i i:
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析(原文).pdf
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析(原文).pdf
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析(譯文)
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析(譯文).doc
- 車輛工程外文翻譯--采用非線性有限元方法的車架動(dòng)態(tài)受力分析(譯文).doc
- 工程車輛ROPS非線性有限元模型修正方法研究.pdf
- 車架有限元分析外文文獻(xiàn)翻譯
- 預(yù)應(yīng)力型鋼混凝土框架梁非線性有限元受力分析.pdf
- 車架有限元分析外文文獻(xiàn)翻譯
- 索膜結(jié)構(gòu)體系受力性能的非線性有限元分析.pdf
- 芯鋼管混凝土節(jié)點(diǎn)受力性能的非線性有限元分析.pdf
- 預(yù)應(yīng)力高強(qiáng)混凝土梁受力的非線性有限元分析.pdf
- 淺談巖土工程分析的非線性有限元理論
- 車架有限元分析外文文獻(xiàn)翻譯(譯文)
- 預(yù)應(yīng)力型鋼混凝土連續(xù)組合梁非線性有限元受力分析.pdf
- 車架有限元分析外文文獻(xiàn)翻譯(英文)
- 車架有限元分析外文文獻(xiàn)翻譯(英文)
- 基于非線性規(guī)劃的有限元極限分析方法及其工程應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論